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Chapter 1

Structure Theory I

1.1 Invertible Elements and Spectra

Definition. A C∗ algebra is an involutive Banach algebraA with a norm satisfying the relations

‖AB‖ ≤ ‖A‖ ‖B‖ ,
‖A∗‖ = ‖A‖ ,
‖A∗A‖ = ‖A‖2 .

We denote the dual algebra byA′. Then we can and often will use the weak topology forA and
the weak-* topology forA′. These properties are motivated by the study of bounded operators on
Hilbert spaces. For example, to show that‖A∗A‖ = ‖A‖2 holds inB(H), for some Hilbert spaceH,
we have the following calculation.

‖Aψ‖2 ≤ ‖ψ‖2 ‖A∗A‖
=⇒ ‖A‖2 ≤ ‖A∗A‖ .

The first two properties are easy and they give

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

=⇒ ‖A‖2 = ‖A∗A‖ .

Remark.Some algebras come without a unit element. Such algebras are sometimes more easy to
deal with if a unit element is appended in a formal way. A typical example of this is the appending
of the Dirac delta function to a convolution algebra of smooth functions, there being no smooth
representative which can play the role of the unit element in a convolution algebra.

Definition. LetA be a Banach algebra. Define the unitization ofA to be

A+ = (a, λ) ∈ A× C

with

(a, λ) · (b, µ) = (ab+ λb+ µa, λµ).

4



CHAPTER 1. STRUCTURE THEORY I 5

Definition. The resolvent ofA ∈ A, Res (A) ⊆ C, is the set{λ ∈ C : (λ− A)−1existsinA}.

Definition. The spectrum ofA ∈ A, Spec (A), is the complement ofRes (A).

1.1. Theorem (Spectral Radius).

1. Res (A) is open.

2. Spec (A) is compact.

3. supλ∈Spec(A) |λ| = limn→∞ ‖An‖1/n = infn ‖An‖1/n.

Proof. The first two follow easily from the definitions. To prove the third, writeαn = ‖An‖, then
αn+l ≤ αnαl. Letm ∈ Z, m > 0. We can writen = p(n)m + q(n), wherep(n) andq(n) < m are
unique integers. Then

α1/n
n ≤ α

1/n
p(n)mα

1/n
q(n) ≤ αp(n)/n

m α
1/n
q(n).

Now

lim sup
n→∞

α1/n
n ≤ lim

n→∞
αp(n)/n
m (sup{α0, α1, . . . , αm})1/n ≤ lim

n→∞
αp(n)/n
m ≤ α1/m

m , for any m.

Therefore

lim sup
n→∞

α1/n
n ≤ inf

n
α1/n
n ≤ lim inf

n→∞
α1/n
n ,

so that the limit of the theorem exists and equalsinfn ‖An‖1/n. To show thatsupλ∈Spec(A) |λ| =

limn ‖An‖1/n, let ζ be such that|ζ| > limn ‖An‖1/n, then |ζ| > infn ‖An‖1/n so that the series∑
(A/ζ)n converges in norm to(1− A/ζ)−1 soζ 6∈ Spec (A). Furthermore, suppose that for allr

in the interval
(

supλ∈Spec(A) |λ|, supn ‖An‖
1/n
)

, (1− A/r)−1 existed. Then(1− A/r)−1 would be

analytic forr > supλ∈Spec(A) |λ| and(1− A/r)−1 =
∑

n(A/r)n. But‖An/rn‖1/n > ‖An‖1/n

infn‖An‖1/n
≥ 1.

⇒⇐.

1.2. Theorem (Holomorphic Symbolic Calculus).LetA be aC∗ algebra, andA ∈ A. Let f be
holomorphic onO⊃ Spec (A). Then we can definef(A) ∈ A such that

1. f 7→ f(A) is a homomorphism of the algebra of holomorphic functions onO toA.

2. For the functionf(λ) ≡ λ, f(A) = A.

3. For f(λ) ≡ (λ− λ0)−1, f(A) = (A− λ)−1.

4. Spec (f(A)) = f(Spec (A)). [spectral mapping theorem]

Proof. First we prove that1
2πi

∫
Γ
(α−λ)n(λ−A)−1dλ = (α−A)n, whereΓ is a contour surrounding

Spec (A). Let yn equal this integral expression. Then it is easy to show that(α−A)yn = yn+1. Thus
the formula will follow from the casen = 0.

By the Cauchy theorem for vector-valued integrals we can replace the contourΓ by a circle of radius
r > ‖A‖. Then integrate(λ− A)−1 =

∑
λ−n−1An term by term. This proves the result forn = 0.
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Now we can assert the statements of the theorem for rational functionsf since the integrands will
then always be of the given form by factorization.

Finally, the approximation of holomorphic functions by rational functions converges uniformly on
compact sets. Therefore we can definef(A) for holomorphicf by interchanging the limit and the
integral.

Remark.In order to state a more refined version of the symbolic calculus, valid for arbitrary contin-
uous functions onSpec (A), we need to delve into the theory of commutativeC∗ algebras.

Definition. A subspaceI of a commutative algebraA is called an ideal if, for anyA ∈ A, AB ∈ I
wheneverB ∈ I.

Definition. A complex homomorphism,φ, of a Banach algebra is a linear functional with the prop-
ertyφ(AB) = φ(A)φ(B). It is also called a character of the algebra.

1.3. Theorem (Gleason, Kahane, Zelazko).If φ is a linear functional on a Banach algebra such
thatφ(1) = 1, andφ(A) 6= 0 for any invertibleA, thenφ is a complex homomorphism.

Proof. See [Rud91].

1.4. Theorem (Gelfand-Mazur). Let A be a Banach algebra in which every nonzero element is
invertible. ThenA is isometrically isomorphic toC.

Proof. Let A ∈ A andλ1 6= λ2; then at least one ofλ1 − A, λ2 − A is invertible by hypothesis.
Spec (A) is nonempty by a standard result (a spectrum is never empty), so it follows that for each
suchA there is a uniqueλ(A) ∈ C in Spec (A). The mappingA 7→ λ(A) is an isomorphism since
A = λ(A) · 1; it is obviously an isometry.

1.5. Theorem. LetA be a commutative Banach algebra, and let∆ be the set of all complex homo-
morphisms ofA. Then

1. Every maximal ideal ofA is the kernel of someh ∈ ∆.

2. If h ∈ ∆, ker (h) is a maximal ideal ofA.

3. A ∈ A invertible if and only ifh(A) 6= 0 for all h ∈ ∆.

4. A ∈ A invertible if and only ifA lies in no proper ideal ofA.

5. λ ∈ Spec (A) if and only ifh(A) = λ for someh ∈ ∆.

Proof.

1. LetM be a maximal ideal ofA. Since the set of all invertible elements is open, maximal ideals
are closed; soM is closed. ThereforeA/M is a Banach algebra. Choosex ∈ A, x 6∈ M , and
setJ = {ax+ y : a ∈ A, y ∈M}. ThenJ is an ideal, andx ∈ J soJ is larger thanM , so
J = A. Therefore, for someA ∈ A andy ∈ M we haveAx + y = 1. Applying the quotient
mapπ : A −→ A/M we see thatπ(A)π(x) = π(1), thus every nonzero element ofA/M is
invertible. So by the Gelfand-Mazur theoremA/M ∼= C, j : A/M −→ C. Leth = j ◦π, then
h ∈ ∆ andh(M) = 0.
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2. If h ∈ ∆ thenh−1(0) is an ideal inA with codimension 1. Therefore it is maximal.

3. If A is invertible inA andh ∈ ∆, thenh(A)h(A−1) = h(1) = 1 and soh(A) 6= 0. If A is not
invertible then{aA : a ∈ A} ∩ {1} = ∅, so{aA : a ∈ A} is a proper ideal which lies in a
maximal ideal and so it is annihilated by someh ∈ ∆ by the first result.

4. No invertible element lies in any proper ideal. The converse is proved in the previous item.

5. Apply the third item toλ− A instead ofA.

Remark.As an application of the above we have the following result on Fourier series.

1.6. Theorem (Wiener Lemma).Supposef : Rn −→ C,

f(x) =
∑
m∈Zn

am exp im · x,
∑
|am| <∞,

If f(x) is never zero then

1/f(x) =
∑
m∈Zn

bm exp im · x,
∑
|bm| <∞.

Proof. LetA be the commutative Banach algebra of functions of the form
∑
am exp im · x with the

norm‖f‖ =
∑
|am|. For eachx ∈ Rn, the evaluation mapf 7→ f(x) is a complex homomorphism.

By assumption no evaluation gives zero. So if we can prove that all complex homomorphisms ofA
are evaluations for somex ∈ Rn, then the third part of the structure theorem above will assert the
existence of1/f in A.

Let h be any complex homomorphism ofA. Write gr(x) = exp ixr, r = 1, . . . , n; xr is ther-th
coordinate ofx ∈ Rn. Thengr ∈ A, 1/gr ∈ A, and‖gr‖ = ‖1/gr‖ = 1.

It is easy to see that if‖A‖ < 1 then|φ(A)| < 1 for any complex homomorphismφ, since for any
λ ∈ C with |λ| > 1 we know(1 − A/λ)−1 exists and soφ(1 − A/λ) 6= 0 and soφ(A) 6= λ. So we
see that|h(gr)| ≤ 1 and|h(1/gr)| = |1/h(gr)| ≤ 1. Thereforeh(gr) = exp iyr for someyr ∈ R,
r = 1, . . . , n.

Let P be any trigonometric polynomial. Thenh(P ) = P (y1, . . . , yn). But h is continuous and the
trigonometric polynomials are dense inA, soh(f) = f(y) for all f ∈ A and soh is evaluation at
y.

1.2 Gelfand Transform

Definition. GivenA ∈ A we can define a function̂A : ∆ −→ C by

Â(h) = h(A).

Â is called the Gelfand transform ofA. It is also sometimes called the spectrum ofA, though we
will never use this terminology.



CHAPTER 1. STRUCTURE THEORY I 8

Definition. The Gelfand topology on∆ is the weakest topology such thatÂ is continuous for every
A ∈ A.

Definition. The radical ofA, rad (A), is the intersection of all the maximal ideals ofA.

1.7. Theorem. Let∆ be equipped with the Gelfand topology. Then

1. ∆ is a compact Hausdorff space.

2. The Gelfand transform is a homomorphism ofA onto a subalgebra of the continuous functions
on ∆, and the kernel of this homomorphism israd (A). Thus the Gelfand transform is an
isomorphism if and only ifrad (A) = {0}.

3. For all A ∈ A, Ran(Â) = Spec (A), and
∥∥∥Â∥∥∥

∞
= supλ∈Spec(A) |λ| ≤ ‖A‖. Furthermore,

A ∈ rad (A) if and only ifsupλ∈Spec(A) |λ| = 0.

Proof. For a complete proof see [Rud91]. The second and third items follow from the structure
theorem above, together with some computation. The first item follows from the Banach-Alaoglu
theorem and a proof of the closure of∆. The Gelfand topology is the restriction of the weak-*
topology to∆.

Definition. The setÂ ⊆ ∆ is called the spectrum ofA. To avoid technical complications, the
spectrum ofA is actually defined as not to contain the zero homomorphism.

Remark.Here is an example that shows how the Gelfand transform is a generalization of the Fourier
transform, in theL1 context. LetA = L1 (Rn) dx, with unit attached. So members ofA aref + αδ,
whereδ is the Dirac measure. Of course, the multiplication is convolution.

Let h be a complex homomorphism,h ∈ ∆; thenh is one of the following forms,

ht(f + αδ) = f̂(t) + α

or

h∞(f + αδ) = α

We prove this as follows. Ifh(f) = 0 for all f ∈ A thenh = h∞. Assumeh(f) 6= 0 for some
f ∈ A. Thenh(f) =

∫
fβ for someβ ∈ L∞ (Rn) dx. Sinceh(f ? g) = h(f)h(g), we can show that

β coincides almost everywhere with a continuous functionb which satisfiesb(x + y) = b(x)b(y).
But every bounded solution of this functional equation is of the formb(x) = exp(−ixt). Thus
h(f) = f̂(t) andh is of the formht.

So ∆ = R
n ∪ {∞}, say with the topology of the one-point compactification. Sincef̂(t) → 0 as

|t| → ∞, Â ⊂ C(∆). Â separates points on∆ so the weak topology induced on∆ by Â is as we
have chosen.

1.8. Theorem (Gelfand-Naimark). Let A be a commutativeC∗ algebra, and equip∆ with the
Gelfand topology as usual. Then the Gelfand transform is an isometric *-isomorphism ofA onto the
algebra of continuousC-valued functions on∆, C(∆).
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Proof. In order to show that the involution is preserved we need only show that forA = A∗, h(A) ∈
R. So letA = A∗ and writeh(A) = α + iβ. Calculate

h(A+ it) = α + i(β + t)

α2 + (β + t)2 = |h(A+ it)|2 ≤ ‖A+ it‖2 = ‖(A+ it)(A− it)‖ ≤ ‖A‖2 + t2

α2 + β2 + 2βt ≤ ‖A‖2 ∀t ∈ R
=⇒ β = 0.

By definition the elements of̂A ⊆ C(∆) separate points of∆. Also, 1̂ = 1, so1 ∈ Â. ThereforeÂ
is dense inC(∆) by the Stone-Weierstrass theorem.

Now we show that̂· is an isometry. Letx ∈ A, y = xx∗. So y = y∗ and ‖y2‖ = ‖y‖2 and
‖ym‖ = ‖y‖m. Therefore by the spectral radius formula‖ŷ‖∞ = ‖y‖. Sincey = xx∗, ŷ = |x̂|2, and
so |x̂|2 = ‖ŷ‖∞ = ‖y‖ = ‖xx∗‖ = ‖x‖2 , proving the isometry. From this,̂A is closed inC(∆) and
soÂ = C(∆).

1.9. Theorem (Inverse Gelfand-Naimark).LetA be a commutativeC∗ algebra. Letx ∈ A be
such that the polynomials inx andx∗ are dense inA. Then we can define an isometric isomorphism
Ψ : C(Spec (x)) −→ A by

̂(Ψf) = f ◦ x̂,

and we have

Ψf ∗ = (Ψf)∗.

Moreover iff(λ) = λ, thenΨf = x.

Proof. Let ∆ be equipped with the Gelfand topology. Thenx̂ is a continuous function on∆ with
Ran(x̂) = Spec (x). Suppose we haveh1 andh2 from ∆ such thath1(x) = h2(x). Then also
h1(x∗) = h2(x∗). By continuity,h1(y) = h2(y) for all y in the algebra generated by polynomials
in x andx∗, i.e. A. Thereforeh1 = h2. Thereforex̂ is one-to-one. Since∆ is compact,̂x is a
homeomorphism∆ → Spec (x). Thereforef 7→ f ◦ x̂ is an isometric isomorphism ofC(Spec (x))
ontoC(∆). By the Gelfand-Naimark theorem,f◦x̂ is thus the Gelfand transform of a unique element
in A which we denoteΨf , and‖Ψf‖ = ‖f‖∞. If f(λ) = λ, thenf ◦ x̂ = x̂ andΨf = x.

Remark.This last theorem provides a continuous symbolic calculus for operators as long as they
generate a commutativeC∗ algebra. So, for example, ifx is a normal operator then we apply the
above theorem to the algebra generated byx andx∗, and we get the continuous functional calculus
for normal operators.

1.3 Local Algebras, Idempotents and Projections

Definition. A local Banach algebra is a dense subalgebraA of a Banach algebraAwhereA is closed
under holomorphic symbolic calculus inA.
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Remark.Note that we need the explicit reference to the completionA, in order to definef(a) for
a ∈ A becausef is required to be holomorphic on the spectrum of the elementa, and the spectrum
depends on the whole algebra. However, ifA has a unit, then direct reference toA is not necessary,
as shown by the following.

1.10. Theorem.LetA be a local Banach algebra with unit. Letz ∈ A be invertible inA. Thenz is
invertible inA. Therefore the spectrum of any element is the same inA or A.

Proof. Let z be invertible inA. So the domain of holomorphy off(λ) = λ−1 is contained in
theA-spectrum ofz, by definition. By definition,A is closed under action off in its domain of
holomorphy.

Definition. LetA be a local Banach algebra. An idempotent inA is an elementx with x2 = x. If
idempotentsx, y satisfyxy = yx = 0, they are said to be orthogonal, writtenx ⊥ y. If idempotents
x, y satisfyxy = yx = x, we writex ≤ y.

Definition. LetA be a localC∗ algebra. Then two idempotentsx, y are said to be orthogonal if, in
addition to the above, we havex∗y = yx∗ = 0.

Definition. LetA be a localC∗ algebra. An idempotent is called a projection if it is self-adjoint.

1.11. Theorem.The idempotents ofA are dense in the idempotents ofA.

Proof. Let x be an idempotent ofA, and letε > 0. Choosey in a neighbourhood ofx such that
‖y − y2‖ = ‖x− x2 + δ − 2xδ − δ2‖ < ε. So the spectrum ofy is contained completely in anε
neighbourhood of 0 and 1. Construct the required idempotent by holomorphic calculus.This is not
so clear to me....



Chapter 2

von Neumann Algebras

2.1 Commutant and Bicommutant

Remark.Now we will introduce von Neumann algebras. These are defined in a concrete sense,
explicitly as subalgebras ofB(H) for a Hilbert spaceH. Recall the zoo of topologies onB(H).

1. The norm topology or uniform topology.

2. The strong topology is the locally convex topology associated to the family of seminorms
χ→ ‖χv‖, v ∈ H.

3. The weak topology is the locally convex topology associated with the family of seminorms
χ→ | (v, χw) |, v, w ∈ H.

Definition. A von Neumann algebra is a strongly closedC∗-subalgebra ofB(H).

Definition. The commutant ofM ∈ B(H) is the setM c = {x ∈ B(H) : xy = yx ∀y ∈M}. Clear-
ly M c is a weakly closed subalgebra.

2.1. Theorem (von Neumann).LetM be aC∗-subalgebra ofB(H), containing the identity. Then
T.F.A.E.

1. M = Mcc.

2. M is weakly closed.

3. M is strongly closed.

Proof. The second clearly follows from the first. To show that the second and third are equivalent,
note the fact that each strongly closed convex set inB(H) is weakly closed.

To show that the last implies the first, lety be a fixed element ofMcc. Let p be the projection onto
the closed subspace ofpH = {xξ : x ∈M} for some fixedξ ∈ H. Clearlypy = yp soyξ ∈ pH.
Therefore there existsx ∈M such that‖(y − x)ξ‖ < ε, for eachε > 0.

11
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Takeξ1, ξ2, . . . , ξn ∈ H and putξ = ξ1⊕· · ·⊕ξn ∈ H⊕· · ·⊕H. Nowy⊕· · ·⊕y ∈ (M⊕ · · · ⊕M)cc.
Apply the construction above to find anx such that‖(y ⊕ · · · ⊕ y − x⊕ · · · ⊕ x)ξ‖ < ε. Then

n∑
k=1

‖(y − x)ξk‖2 < ε2.

Thereforey is approximated byx in the strong topology, and so by hypothesisy ∈ M. Therefore
Mcc ⊆M. The opposite inclusion is obvious.

2.2. Theorem (Kaplansky Density).LetA be aC∗-subalgebra ofB(H) with strong closureM.
Then the unit ballA1 of A is strongly dense in the unit ballM1 ofM. If 1 ∈ A, then the unitary
group ofA is strongly dense in the unitary group ofM.

Proof. See [Kap51].

2.2 Factors

Definition. LetM be a von Neumann algebra. Then the center ofM isZ (M) =M∩Mc.

Definition. If Z (M) = {α1 : α ∈ C}, thenM is called a factor.

Remark.A factor is a kind of algebraic counterpart of an irreducible representation. The factors play
an important role in the classification of von Neumann algebras.

2.3 The Trace

Definition. LetA ∈ B(H), A ≥ 0. The trace ofA is

Tr (A) =
∑
i

(vi, Avi) ∈ [0,∞].

If Tr (A) <∞ thenA is called trace class.

Definition. Consider the family of seminorms‖·‖i : A 7→ |Tr (ABi) |, for {Bi} the set of trace class
operators. The topology associated to this family is called theσ-weak topology or the ultra-weak
topology.

Remark.Choosing a basis we see that every functionalA 7→ Tr (AB) can be written asA 7→∑
(vi, Awi), so the ultra-weak topology is stronger than the weak topology. However, these two

topologies coincide on the unit ball ofB(H).

Definition. A bounded functionalφ on a von Neumann algebraM is called normal if for each
bounded monotone increasing net{Ai} in Msa with limit A, the net{φ(Ai)} converges toφ(A).
The set of normal functionals on a von Neumann algebraM is denoted byM∗. M∗ is a Banach
space andM∗

′ =M. ThusM∗ is called the pre-dual ofM.

2.3. Theorem. Letφ be a bounded functional on a von Neumann algebraM. Then T.F.A.E.
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1. φ is normal.

2. φ is weakly continuous on the unit ball inM.

3. φ is ultra-weakly continuous.

4. There is a trace class operatorA such thatφ(B) = Tr (AB) for all B ∈M.

Proof. See [Ped79].

2.4. Theorem. Let φ be a positive normal functional on a von Neumann algebraM. Then there
exists a positive trace class elementA ∈ B(H), such thatφ(B) = Tr (AB) for all B ∈M. Further-
more,‖φ‖ = Tr (A).

Proof. See [Ped79].

2.4 Hyperfinite Algebras

Definition. A von Neumann algebraM is called hyperfinite if there exists an increasing sequence
of finite-dimensional subalgebras whose union is weakly-dense inM.



Chapter 3

States and Representations

3.1 GNS Construction

Definition. A linear functional on aC∗ algebraA satisfyingφ(A∗A) ≥ 0 for all A ∈ A is called a
positive functional.

3.1. Theorem. The following properties hold for positive functionalsφ.

1. If A is self-adjoint thenφ(A) ∈ R.

2. |φ(A∗B)|2 ≤ φ(A∗A)φ(B∗B).

3. φ is continuous w.r.t. the norm topology.

4. φ(B∗AB) ≤ ‖A‖φ(B∗B).

Proof. These are elementary properties following from the definition.

Definition. The state space forA is defined by

A′1+ = {φ ∈ A′ : φ ≥ 0, ‖φ‖ = 1} .

3.2. Theorem (Banach-Alaoglu).The unit ball inA′, A′1, is compact in the weak-* topology. And
thus so isA′1+.

Remark.A′1+ is obviously convex. Since it is compact, by the Krein-Milman theorem it is equal to
the convex hull of its extreme points.

Definition. The extreme points ofA′1+ are called pure states.

Definition. A representation ofA onB(H) is aC∗ algebra homomorphismπ : A −→ B(H).

Definition. π is called irreducible if the only closed invariant subspaces ofH are{0} andH.

Definition. A vectorΦ ∈ H is cyclic forπ if the set{π(A)Φ : A ∈ H} is a total subset ofH.

3.3. Theorem. T.F.A.E.

14
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1. π : A −→ B(H) is irreducible.

2. Every operator that commutes with all ofπ(A) is a multiple of 1. [Schur]

3. EveryΦ ∈ H is cyclic forπ.

Definition. π1 andπ2 are called unitarily equivalent if there exists an isomorphismV : H1 −→ H2

such thatπ2(A) = V π1(A)V −1 for all A ∈ A.

3.4. Theorem. Let π1 andπ2 be irreducible and not unitarily equivalent. Then for every bounded
T : H1 −→ H2, we have

Tπ1(A) = π2(A)T ∀A ∈ A ⇐⇒ T = 0.

Proof. ConsiderT ∗T and use the above result.

Definition. π is faithful if one of the following equivalent statements holds.

1. π(A) = π(B) =⇒ A = B.

2. π(A) = 0 =⇒ A = 0.

3. A 7→ π(A) is an isomorphism.

3.5. Theorem (Gelfand-Naimark-Segal).Letφ be a positive functional onA. Then there exists a
(cyclic) representationπφ on a Hilbert space, with a cyclic vectorΦφ such that

φ(A) = (Φφ, πφ(A)Φφ) ∀A ∈ A.

Furthermore,πφ is unique up to unitary equivalence.

Proof. Let Fφ = {A ∈ A : φ(A∗A) = 0}. It is easy to show thatFφ is a left ideal. Letξφ(A) =
A/Fφ. Note thatω(A,B) = φ(A∗B) defines a positive scalar product onξφ(A). We writeξφ(A) for
the projection ofA ontoA/Fφ. By completingξφ(A) we get a Hilbert space.

Define the representationπφ by πφ(A)ξφ(B) = ξφ(AB). It follows from (ξφ(B), πφ(A)ξφ(B)) =
φ(B∗AB) thatπφ(A) is bounded;‖πφ(A)‖ ≤ ‖A‖. Thus by continuity it can be extended to all of
H. SetΦφ = ξφ(1).

All that remains is the proof of uniqueness. Letπ be another representation ofA onH with cyclic
vector Φ and such thatφ(A) = (Φ, π(A)Φ) for all A ∈ A. The setsπ(A)Φ andπφ(A)Φφ are
each everywhere dense subspaces ofH. Thus we can defineV by V πφ(A)Φφ = π(A)Φ for all
A ∈ A, andV extends by continuity to an isomorphismH → H. Now we can use this to prove
πφ(A) = V π(A)V −1 for all A ∈ A.

3.6. Theorem (Gelfand-Naimark). For all A ∈ A, ‖A‖ = supπ ‖π(A)‖.

Definition. Let πφ be the GNS representation for the stateφ. The folium of the representationπφ is
the set of all states of the form

φρ(A) = Tr (ρπφ(A)) , A ∈ A,

for ρ ∈ B(Hφ) trace class and positive.
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3.7. Theorem. The folium of a faithful representation of aC∗ algebraA is weakly dense inA′1+.

Proof. See Ref. [Fel60].

Definition. Letγ be an automorphism of theC∗ algebraA. We say that the positive linear functional
φ onA is invariant with respect toγ if φ(γ(A)) = φ(A) for all A ∈ A.

3.8. Theorem (Unitary Representations).Letφ be as above. Let(πφ,Hφ,Φφ) be given by the GNS
construction. Then there exists a unitary operatorU such that

πφ(γ(A)) = Uπφ(A)U−1 ∀A ∈ A.

Proof. DefineU by using

Uπφ(A)Φφ = πφ(γ(A))Φφ.

Remark.Note that if we demandUΦφ = Φφ thenU is determined uniquely.

Definition. A subspace of the state space,F ⊆ A′1+, is said to be separating forA if

A 3 A positive and φ(A) = 0 ∀φ ∈ F =⇒ A = 0.

3.9. Theorem. LetA be separable. Then the state
∑

2−nφn is separating for any dense sequence
{φn} ⊆ A′1+.

Proof. A is separable, therefore the unit ball ofA′ is second countable, since it is weak-*-metrizable
and compact. ThereforeA′1+ is second countable, and the result follows.

Definition. It is customary to say thatφ is faithful if it is separating. This is sensible by the result of
the next theorem. For eachF ⊆ A′1+ we formHF = ⊕φ∈FHφ andπF = ⊕φ∈Fπφ.

3.10. Theorem.LetF ⊆ A′1+ be a separating family of states forA. ThenπF is a faithful represen-
tation ofA intoB(H).

Proof. Let A be positive andA ∈ ker (πF ). Thenφ(A) = (πφ(A)Φφ,Φφ) = 0 for all φ ∈ F .
ThereforeA = 0 andker (πφ) = {0}.

3.2 Basic Structure of Representations

Definition. The universal Hilbert space for aC∗ algebraA and the universal representation forA
are defined to be

HA′1+
, πA′1+

.

Definition. The enveloping von Neumann algebra forA is the strong closure ofπA′1+
(A) inB(HA′1+

).
The enveloping von Neumann algebra is conveniently denoted byAcc. By the following we can also
denote it asA′′.
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3.11. Theorem.LetA be aC∗ algebra. Then the enveloping von Neumann algebra ofA is isomor-
phic as a Banach space to the second dual ofA.

Proof. Each state ofA is a vector state inHA′1+
, and therefore a normal state onAcc. Obviously

each element ofA′ is a linear combination of elements ofA′1+. Therefore we can define a map from
A′ into the pre-dual ofAcc.
NowA is ultra-weakly dense inAcc, so this map is a linear isometry and eachφ in the pre-dual of
Acc will be the image ofφ|A in A′. ThusA′ is the pre-dual ofAcc. ThereforeA′′ = Acc.

Definition. Given a (non-degenerate) representation(π,H) of aC∗ algebraA, we can find a projec-
tion in the enveloping von Neumann algebra,Acc, which takes us down to the image ofπ. In other
words, this is the projection onto the block(π,H) inside the enveloping von Neumann algebra, which
contains all representation elements. This projection is called the central cover of the representation
(π,H). Denote this projection byc(π).

3.12. Theorem (Central Projections).Let (π1,H1), (π2,H2) be two representations of aC∗ alge-
braA. These representations are equivalent if and only ifc(π1) = c(π2). The map(π,H) 7→ c(π) is
a bijection between nonzero central projections inAcc and equivalence classes of representations of
A.

Proof. For each central projectionp 6= 0 in Acc, we can form a representation forA with the map
A 7→ Ap, A ∈ A. The Hilbert space for the representation ispHA′1+

, and its central cover isp. Thus
we associate a representation with each central projection. Now if(π,H) is a representation then
clearly it is equivalent to the representationπ̃ : A 7→ Ac(π) on c(π)HA′1+

.

Remark.It is important to know when a separableC∗ algebra has a representation on a separable
Hilbert space. In particular, the enveloping von Neumann algebra acts on a generically non-separable
space, and we would like to know how this interacts with representations.

Definition. A von Neumann algebraM is calledσ-finite or countably decomposable if each set of
pairwise orthogonal non-zero projections inM is countable. A projectionp onM is calledσ-finite
if pMp is σ-finite. IfM acts on a separable Hilbert space then it isσ-finite. A partial converse of
this is true.

3.13. Theorem.A von Neumann algebraM has a faithful normal representation on a separable
Hilbert space if and only ifM is σ-finite and contains a strongly dense sequence (is countably
generated).

Proof. LetM ⊂ B(H), H separable, thenM is σ-finite. Since the unit ball inB(H) is second
countable for the strong topology, the unit ball inM is second countable and soM is separable in
the strong topology.

Conversely, for eachv ∈ H define[Mcv] ∈M to be the projection onto the closure of the subspace
Mcv. Let{[Mcv]} be a maximal family of these projections, so

∑
[Mcv] = 1. IfM is σ-finite then

{vn} is countable. Letφ(A) =
∑

2−n (Avn, vn), thenφ is a normal state onM. It is also clear that
φ is faithful.M is countably generated therefore there exists aC∗ algebraA which is separable and
strongly dense inM. Hφ contains a dense separable subspace, so it is separable.

3.14. Corollary. A representation(π,H) of a separableC∗ algebraA is equivalent to a separable
representation if and only ifc(π) is σ-finite inAcc.
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3.15. Theorem.Let (π1,H1) and (π2,H2) be non-degenerate representations of aC∗ algebraA.
Then T.F.A.E.

1. c(π1) ⊥ c(π2).

2. (π1 ⊕ π2)Acc = πcc1 (A)⊕ πcc2 (A)

3. (π1 ⊕ π2)Ac = πc1(A)⊕ πc2(A)

4. There are no equivalent subrepresentations of(π1,H1) and(π2,H2).

Proof.

1=⇒2

ker (π1 ⊕ π2)′′ = A′′(1− c(π1)− c(π2))

=⇒ ((π1 ⊕ π2)′′A)
cc ∼= Acc(c(π1) + c(π2))

=⇒ ((π1 ⊕ π2)A)cc ∼= π1(A)cc ⊕ π2(A)cc.

2=⇒3 Follows from von Neumann’s bicommutant theorem.

3=⇒4 Assume there exists an isometryu : H1 −→ H1. By definition of equivalenceu∗u ∈ π1(A)c,
uu∗ ∈ π2(A)c, andu∗(π2(A)uu∗)u = π1(A)u∗u for all A ∈ A. Now

(π1 ⊕ π2)(A)u = (π1(A) + π2(A))u

= uπ1(A) = π2(A)u

regardingu as an element ofB(H1 ⊕H2)

= u(π1(A) + π2(A))

= u(π1 ⊕ π2)(A)

=⇒u ∈ ((π1 ⊕ π2)(A))c

By assumption((π1 ⊕ π2)(A))c ⊂ B(H1)⊕ B(H2). Sou = 0.

4=⇒1 If 1 does not hold then consider subrepresentations with central coverc(π1)c(π2).

Definition. Representations satisfying the properties of the previous theorem are called disjoint rep-
resentations.

Definition. A non-degenerate representation(π,H) of aC∗ algebraA is called a factor represen-
tation whenπ(A)cc is a factor. Note that(π,H) is a factor representation if and only ifc(π) is a
minimal projection in the center ofA′′. Two factor representations are either equivalent or disjoint.

Definition. Let (π,H) be a representation of aC∗ algebraA. If K ⊂ H is a linear subspace with
π(A)K ⊂ K, thenK is called reducing forπ. Representations satisfying the conditions of the
following theorem are called irreducible.
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3.16. Theorem (Irreducible Representations).Let (π,H) be a nonzero representation of aC∗ al-
gebraA. Then T.F.A.E.

1. There are no non-trivial reducing subspaces forπ.

2. π(A)c = {α1}.

3. π(A) is strongly dense inB(H).

4. Each non-zerov ∈ H is cyclic forπ(A).

5. (π,H) is equivalent to a cyclic representation associated with a pure state.

Proof. The proof is straightforward computation. See [Ped79].

3.17. Corollary. Two irreducible representations(π1,H1) and (π2,H2) of A are either disjoint or
equivalent.

Proof. If they are not disjoint then they have equivalent subrepresentations by a previous result. But
irreducible representations have only trivial subrepresentations by the above.

3.18. Theorem (Repelling Representations).Let φ and ψ be pure states of aC∗ algebraA. If
‖φ− ψ‖ < 2 then(πφ,Hφ) and(πψ,Hψ) are equivalent. If they are equivalent, thenψ = φ(u∗ · u)
for some unitaryu ∈ A.

Proof. Assume(πφ,Hφ) and(πψ,Hψ) are not equivalent. Then they are disjoint,c(πφ) ⊥ c(πψ).
Now φ(c(πφ)) = 1 andψ(c(πψ)) = 1, soφ(c(πψ)) = 0 andψ(c(πφ)) = 0, so‖φ− ψ‖ ≥ (φ −
ψ)(c(πφ)− c(πψ)) = 2.

To prove the second part, assume the representations are equivalent. Then for everyA ∈ A we have

ψ(A) = (πφ(A)ξ, ξ) for some unitaryξ ∈ Hφ.

Let u be the unitary which takesξ to Φφ, πφ(u)Φφ = ξ. Then

ψ(A) = (πφ(A)πφ(u)Φφ, πφ(u)Φφ)

= (πφ(u∗Au)Φφ,Φφ)

= φ(u∗AU).

Remark.Previously we introduced the idea of the Gelfand transform of a commutative Banach al-
gebra. This was a map from algebra elements to functionsh, h : ∆ −→ C. The generalization of
this to the non-commutative case is connected to representation theory.

Definition. Let Irr (A) be the set of irreducible representations ofA. Define the spectrum ofA, Â,
to be the set of equivalence classes of irreducible representations ofA.

Remark.WhenA is commutative, all the irreducible representations are one-dimensional. ThenÂ
is nothing but the set of non-zero complex homomorphisms ofA, which is the Gelfand transform of
A. One approach to the non-commutative case is through the so-called decomposition theory. The
basic object in decomposition theory is the atomic representation.
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Definition. LetA be aC∗ algebra. For eacht ∈ Â choose pure stateφt with representation(πt,Ht).
Define the atomic representation to be(πa,Ht) with

πa = ⊕t∈Âπt Ha = ⊕t∈ÂHt.

Remark.The above definition involves a choice, but the equivalence for different choices is easy to
show, so the atomic representation is essentially unique.

3.19. Theorem.

πa(A)cc =
⊕
t∈Â

B(Ht).

Proof. By a previous theoremπt(A) is strongly dense inB(Ht) for eacht. Thereforeπt(A)cc =
B(Ht). Theπt’s are mutually disjoint so the result follows.

Remark.The decomposition theory proceeds by makingÂ into a measure space, beginning with the
so-calledD-Borel structure. The first major result is a classification of equivalent representations
according to the measures which are associated to them via their states. See [Kad57]. The converse
construction, building representations up from their measures leads to the theory of the direct integral.



Chapter 4

Structure Theory II

4.1 Weights and Traces

Definition. LetA be aC∗ algebra. A weight onA is a functionφ : A+ −→ [0,∞] such that

1. φ(αA) = αφ(A) ∀A ∈ A+, α ∈ R+.

2. φ(A+B) = φ(A) + φ(B) ∀A,B ∈ A+,

whereA+ is the set of positive elements ofA.

Definition. A weight is said to be densely defined if the setAφ+ = {A ∈ A+ : φ(A) <∞} is dense
in A+.

Definition. LetM be a von Neumann algebra. We say thatφ is semi-finite ifMφ
+ is weakly dense

inM. For von Neumann algebras this coincides with the notion ofσ-finite.

Definition. A weightφ on a von Neumann algebraM is calledσ-normal if there exists a sequence
{φn} of sequentially normal positive functionals onM such thatφ(x) =

∑
φn(x) for all x ∈M+.

Definition. φ is called lower semi-continuous if for eachα ∈ R+ the set{A ∈ A+ : φ(A) ≤ α} is
closed.

Definition. A trace on aC∗ algebraA is a weightφ such thatφ(u∗Au) = φ(A) for all A ∈M+ and
u unitary.

4.1. Theorem (Radon-Nikodym).Let φ andψ be normal functionals on a von Neumann algebra
M such that0 ≤ ψ ≤ φ. Then for eachλ ∈ C with Reλ ≥ 1/2 there is an elementh ∈ M1

+ such
that

ψ = λφ(h·) + λ∗φ(·h).

If φ is faithful thenh is unique.

Proof. Let N =
{
λφ(h·) + λ∗φ(·h) : h ∈M1

+

}
. N is compact and convex sinceM1

+ is convex
and ultra-weakly compact.N is a subset of the pre-dual ofM. If ψ 6∈ N , then there is an element

21
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in the self-adjoint part ofM,Msa, saya ∈ Msa, and at ∈ R such thatψ(a) > t, N(a) ≤ t. Let
a = a+ − a− and takeh = [a+]. Then

ψ(a+) ≥ ψ(a+ − a−) > t ≥ 2Reλφ(a+) ≥ φ(a+) ⇒⇐ .

If φ is faithful and ifψ = λφ(k·) + λ∗φ(·k) for somek ∈Msa, then since

(λ+ λ∗)(h− k)2 = λh(h− k) + λ∗(h− k)h− λk(h− k)− λ∗(h− k)k,

we have

2Reλφ((h− k)2) = ψ(h− k)− ψ(h− k) = 0,

=⇒ h = k.

Definition. LetM be a von Neumann algebra on a separable Hilbert space. We have the following
nomenclature.

• M is called finite if it admits a faithful, normal, finite trace.

• M is called semi-finite if it admits a faithful, normal, semi-finite trace.

• M is called properly infinite if it does not admit a non-zero, normal, finite trace.

• M is called purely infinite if it does not admit a non-zero, normal, semi-finite trace.

4.2. Theorem (First Decomposition).LetM be a von Neumann algebra. ThenM has a unique
decomposition

M =M1 ⊕M2 ⊕M3,

where

• M1 is finite,

• M2 is semi-finite but not properly infinite,

• M3 is purely infinite.

Proof. Let φ be a normal trace onM, so φ is weakly lower semi-continuous. ThereforeNφ =
{x ∈M : φ(x∗x) = 0} is a weakly closed ideal ofM. ThereforeNφ = (1− p)M for some central
projectionp ∈M, andφ is faithful onpM.

Also, the weak closure ofMφ = {x ∈M : φ(x) <∞} is an ideal ofM, so there is a central
projectionq such thatφ is semi-finite onqM and purely infinite on(1−q)M. Thereforeφ is faithful
and semi-finite onpqM.

Let {φn, pn} be a maximal family of normal finite tracesφn and pairwise orthogonal projectionspn
such thatφn is faithful onpnM.M is σ-finite [Ped79] so{φn, pn} is countable. Define

φ(x) =
∑

2−nφn(1)−1φn(pnx).
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If p =
∑
pn thenφ is faithful, normal, and finite onpM, and by maximality of{φn, pn}, (1− p)M

is properly infinite.

Let {ψn, qn} be a maximal family of normal, semi-finite tracesψn and pairwise orthogonal projec-
tionsqn ≤ 1 − p such thatψn is faithful onqnM. Letψ(x) =

∑
ψn(qnx), q =

∑
qn. Thenq ⊥ p,

ψ is faithful, normal, and semi-finite onqM. (1 − q − p)M is purely infinite by maximality of
{ψn, qn}.

4.3. Theorem. If M is a semi-finite von Neumann algebra on a separable Hilbert space, thenMc

is semi-finite.

Proof. The proof requires a somewhat technical result. See [Ped79].

4.2 Types

Definition. Let p andq be projections in aC∗ algebraA. If there exists a partial isometryv ∈ A
such thatv∗v = p andvv∗ = q, we say thatp is equivalent toq, writing p ∼ q. Recall thatu is
a partial isometry ifu∗u (and thusuu∗) is a projection. This coincides with the previous notion of
projection equivalence.

Remark.As an example, supposeA = B(H), then two projections are equivalent if and only ifpH
andqH have the same dimension. Thus the equivalence classes of projections on a von Neumann
algebra are a sort of “generalized dimension” set.

Definition. Let x be inMsa. The central cover ofx, c(x), is the infimum of allz ∈ Zsa with z ≥ x.
It exists becauseZsa is a complete lattice.

Definition. A projectionp is called abelian ifpAp is a commutative algebra.

Definition. A von Neumann algebraA is called typeI if there is an abelian projectionp ∈ M with
c(p) = 1.

4.4. Theorem. LetM be a von Neumann algebra of type I, on a separable Hilbert space, and letp
be an abelian projection withc(p) = 1. Then there is a faithful, normal, semi-finite traceφ onM
with φ(p) = 1.

Proof. pMp is a commutative von Neumann algebra on a separable Hilbert space, thereforepMp ∼=
L∞ (T )µ for some locally compact, Hausdorff, second countable measure spaceT with measureµ.
Take any finite measure onT equivalent toµ asφ on pMp. Normalize toφ(p) = 1. φ extends to a
normal semi-finite trace onM, and sincec(p) = 1, φ is faithful onM.

Definition. A von Neumann algebraM is said to be homogeneous of degreen if 1 =
∑n

i=1 pi, for
some{pi} a set ofn orthogonal, equivalent, abelian projections.

4.5. Theorem. LetM be a von Neumann algebra of typeI on a separable Hilbert space. ThenM
has a unique decomposition

M =
⊕
Mn, 1 ≤ n ≤ ∞,

withMn homogeneous of degreen.
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Proof. First we show that every typeIM contains a nonzero, homogeneous, central summand. Let
{qi} be a maximal family of orthogonal abelian projections inM with c(qi) = 1. The family is
non-empty by definition of typeI. Let z = 1 − c(1 −

∑
qi). If z = 0, then there would be an

abelian projectionq ≤ 1 −
∑
qi with c(q) = c(1 −

∑
qi) = 1, contradicting the maximality of

{qi}. Thereforec(z −
∑
zqi) = zc(1−

∑
qi) = 0, butz 6= 0. Thereforez =

∑
zqi, and soMz is

homogeneous.

Let {z(n)
j } be the maximal family of orthogonal central projections each of which is a sum ofn

orthogonal, equivalent, abelian projections{pji}. c(pji) = zj andpi =
∑

j pji is abelian for each
1 ≤ i ≤ n. Let en =

∑
j zj. Thenc(pi) = en, so{pi} is a family of orthogonal, equivalent, abelian

projections since equivalence of projections follows from equality of their central covers.

Now
∑

i pi =
∑

ij pji =
∑

j zj = en, soMen is homogeneous of degreen. Forn 6= m, enem = 0
by the well-defined-ness of the degree of homogeneity.

Since{zj} is maximal,M(1−
∑
en) contains no homogeneous central summand. ButM(1−

∑
en)

is clearly of typeI, which is a contradiction.

4.6. Corollary. LetM be a factor of typeI. ThenM is isomorphic toB(H) wheredimH is the
degree of homogeneity ofM.

Proof. Let p be a non-zero abelian projection inM. SinceM is a factor,p is minimal andc(p) = 1.
Letφ be a normal state withφ(p) = 1. Thenφ is pure and so(πφ,Hφ) is irreducible. Thusπφ(M) =
B(Hφ). The degree of homogeneity ofπφ(M) is obviously equal to that forM.

4.7. Lemma. LetM be a von Neumann algebra of typeI on a Hilbert spaceH. ThenMc is
isomorphic to a von Neumann algebra with abelian commutant.

Proof. Let p be an abelian projection withc(p) = 1. ThenMc ∼= Mcp, and(Mcp)c on pH is
pMp.

4.8. Lemma. LetM be a commutative von Neumann algebra on a Hilbert spaceH. ThenMc is of
typeI.

Proof. Let q be a non-zero projection inMc and choose a unit vectorv ∈ qH. Let p be the cyclic
projection on the closed subspace[Mv]. Thenp ∈Mc andp ≤ q.

NowMp is commutative and has a cyclic vector, so it is maximal commutative onpH. Therefore
Mp = (Mp)c = pMcp. Thereforep is an abelian projection andMc is typeI.

4.9. Theorem. LetM be a von Neumann algebra. Then T.F.A.E.

1. M is of typeI.

2. Mc is of typeI.

3. M is isomorphic to a von Neumann algebra with abelian commutant.

4. Mc is isomorphic to a von Neumann algebra with abelian commutant.

Proof. 1 =⇒4, 2=⇒3 follow from the first lemma.
4 =⇒2, 3=⇒1 follow from the second lemma.
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Definition. M is said to be typeII if it is semi-finite, but contains no non-zero abelian projections.

Definition. M is said to be typeIII if it is purely infinite.

Remark.Notice thatM is finite if it is homogeneous of degreen with n <∞. It is properly infinite
if n = ∞. We thus subdivide typeI into typeIn, 1 ≤ n ≤ ∞. If M is typeII, then we say it is
typeII1 if it is finite and typeII∞ if it is properly infinite. The following theorem is a restatement
of this classification.

4.10. Theorem (Second Decomposition).LetM be a von Neumann algebra on a separable Hilbert
space. ThenM has a unique decomposition into central summands of each type,

M =MI

⊕
· · ·
⊕
MI∞

⊕
MII1

⊕
MII∞

⊕
MIII .

Remark.We would like to extend the notion of type toC∗ algebras which are not necessarily von
Neumann algebras. This is what we do in the following.

Definition. Let A be aC∗ algebra, and letA ∈ A. The hereditary algebra generated byA is the
norm closure ofAAA.

Definition. A positive elementA ∈ A is called abelian if the hereditary algebra generated byA is a
commutative algebra.

Definition. A is a typeI C∗ algebra if each non-zero quotient ofA contains a non-zero abelian
element. IfA is actually generated by its abelian elements, then we sayA is of typeI0.

Definition. If A contains no non-zero abelian elements, then we say it is antiliminary.

Remark.A von Neumann algebra of typeI is not in general aC∗ algebra of typeI. As an example,
let M = B(H) for an infinite-dimensionalH. Let K(H) denote the compact operators. Then
B(H)/K(H) contains no abelian elements.

4.11. Lemma. Let A be a positive element of aC∗ algebraA. ThenA is abelian if and only if
dimπ(A) ≤ 1 for every irreducible representation(π,H) ofA.

Proof. SupposeA is abelian and(π,H) is an irreducible representation. Thenπ(A) is abelian in
π(A), soπ(A)B(H)π(A) is commutative and sodimπ(A) ≤ 1.

Conversely, letA be positive inA and supposedimπ(A) ≤ 1 for each irreducible representationπ.
ThenAAA is commutative in the atomic representation, which is faithful. SoA is abelian.

4.12. Lemma. LetA be aC∗ algebra acting irreducibly on a Hilbert spaceH such thatA∩K(H) 6=
0. ThenK(H) ⊂ A and each faithful irreducible representation ofA is unitarily equivalent to the
identity map.

Proof. A ∩ K(H) 6= 0, therefore there is a finite-dimensional projection inA ∩ K(H) and a one-
dimensional projectionp ∈ A. If ξ is a unit vector inpH then for anyη ∈ H there is anA ∈ A such
thatAξ = η; A acts irreducibly onH. ThereforeA∗pA is the projection onCη. ThusA contains all
the one-dimensional projections, soK(H) ⊂ A.

Furthermore, letφ be a pure state onA. Then(πφ,Hφ) is faithful. φ|K(H) is non-zero since(πφ,Hφ)
is faithful, so it is a state forK(H). Since the dual ofK(H) is the set of trace class operators,
φ(x) = (xξ, ξ), someξ ∈ H, for all x ∈ K(H).
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But the extension of a state from an ideal to the whole algebra is unique, soφ onA is a vector state
φ(A) = (Aξ, ξ). Thus any suchφ determines a cyclic representation with a cyclic vectorξφ and any
suchφ is equal to the identity representation on cyclic vectors, and thus unitarily equivalent to the
identity representation.

4.13. Theorem.LetA be aC∗ algebra of typeI. ThenK(H) ⊂ π(A) for each irreducible repre-
sentation(π,H) ofA.

Proof. (π,H) is irreducible. By the first lemma, forA abelian inA with norm 1, there is a one-
dimensional projection onH. By the second lemmaK(H) ⊂ π(A).

4.14. Corollary. LetA be a type-I0 C
∗ algebra. Then for every irreducible representation(π,H) of

A, π(A) = K(H).

Proof. π(A) is generated by its abelian elements,π(A) ⊆ K(H). ButK(H) ⊂ π(A).

Definition. A C∗ algebraA is called liminary ifπ(A) = K(H) for each irreducible representation
(π,H) of A. Thus each type-I0 C

∗ algebra is liminary, but the converse is false.

Remark.The following are useful properties which we state without proof.

4.15. Theorem.A liminaryC∗ algebra is of typeI.

Proof. See [Ped79].

Definition. If A is aC∗ algebra, we define a composition series to be a strictly increasing family of
closed ideals{Iα} indexed byα ∈ [0, β], a segment of the ordinals, withI0 = 0, Iβ = A, and such
that for each limit ordinalγ we have

Iγ = norm closure

(⋃
α<γ

Iα

)
.

4.16. Theorem.LetA be aC∗ algebra. Then T.F.A.E.

1. A is of typeI.

2. A has a composition series{Iα}, α ∈ [0, β], such thatIα+1/Iα is typeI0 for eachα < β.

3. A has a composition series{Iα}, α ∈ [0, β], such thatIα+1/Iα is liminary for eachα < β.

4. A has a composition series{Iα}, α ∈ [0, β], such thatIα+1/Iα is typeI for eachα < β.

Proof. See [Ped79].
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Matrices

5.1 Inductive Limits

Definition. Define a directed setI to be a partially ordered set such that ifα, β ∈ I then there exists
γ ∈ I with α < γ, β < γ.

Definition. Let I be a directed set. LetXα be locally convex spaces withα varying in I. Let
X =

⋃
α∈I X

α; X is a locally convex space. Suppose thatα < β if and only ifXα ⊂ Xβ and that
the inclusion is continuous. Suppose also that for any convexV ⊂ X, V is a nbhd. ofU ⊂ X if and
only if ∀α ∈ I V ∩Xα is a nbhd. ofU ∈ Xα. When all the above conditions hold we say thatX is
the inductive limit ofXα.

Definition. When theXα are Banach spaces, in particular Banach algebras, the inclusions in the def-
inition of inductive limit are bounded linear maps. When these inclusions also satisfylim supβ ‖φalphaβ‖ <
∞ for all α, the system is called a normed inductive system, and the limitX is called a normed induc-
tive limit. This extra uniformity condition implies that‖x‖ = lim supβ

∥∥φαβ(x)

∥∥, for x ∈ Xα ⊂ X,
is a seminorm onX. Quotienting by elements of zero seminorm and completing gives a Banach
space, which will also be called the inductive limit ofXα, and again we will writeX = lim→X

α.

5.2 Glimm Algebras

Remark.Now we construct some antiliminary algebras which are interesting both as examples of
non-intuitive algebras and as physical fermion algebras. These are the Glimm algebras. We need the
notion of inductive limits for locally convex spaces.

Definition. Let Mm be theC∗ algebra ofm × m matrices, identified withB(Hm). Supposei :

Mm −→ Mn is a morphism ofMm intoMn with i(1) = 1. Let d = Tr
(
i(v

(m)
11 )

)
, wherev(m)

11 is the

matrix with 1 in the(1, 1) place and zeroes elsewhere. We havemd = n.

Let {s(n) : n ∈ N} be a sequence of natural numbers, greater than one. Lets(n)! =
∏n

k=1 s(k).
Then consider the inductive system

Ms(1) →Ms(2)! → · · · →Ms(n)! → · · · ,

27
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with the inclusion mapi. The inductive limitM∞ = ∪Ms(n)! is not necessarily norm complete, but
its completion,A∞, is aC∗ algebra which is called the Glimm algebra of rank{s(n)}.

Definition. The fermion algebra is the Glimm algebra for whichs(n) = 2 ∀n ∈ N.

5.1. Theorem. Every Glimm algebra is a separable, simple (contains no non-zero closed ideals)
C∗ algebra and has a unique tracial state.

Proof. EachMs(n)! is separable andM∞ is dense inA∞, soA∞ is separable. Ifπ is a non-zero
morphism ofA∞, thenπ|Ms(n)!

is an isometry for eachn. ThereforeπM∞ is an isometry andπ is an
isometry. ThusA∞ is simple (every morphism is an isometry).

Let τn be the normalized trace onMs(n)!. Thenτn+1 ◦ i = τn, so there is a unique tracial state on
M∞, and so it is tracial onA∞. Conversely ifφ is tracial onA∞ then from the uniqueness of the
trace onB(Hs(n)!) φ = τ .

5.2. Theorem. There exists a factor of typeII1.

Proof. M = πτ (A∞)cc has a non-zero finite normal trace, the extension ofτ . ker (τ) is a central
projection, so we can assume thatτ is faithful onzM for some central projectionz; τ is faithful on
M∞ soz 6= 0.

Sinceτ is the unique tracial state onA∞, the center ofzM is trivial, sozM is a factor. This factor
is finite but not finite-dimensional, so it is of typeII1.

Remark.Let F denote the fermion algebra. For eachλ ∈ [0, 1/2] we can construct a state onF as
follows.

Let {Λn} be a sequence of convex combinations each of length 2, i.e.Λ1 = 2, Λ2
1 + Λ2

2 = 2, etc.
Note thatMs(n)! = Ms(1) ⊗ · · · ⊗Ms(n), so each element ofMs(n)! can be written

x = x(1) ⊗ · · · ⊗ x(n), x(k) ∈Ms(k).

Let

φΛ(x) =
n∏
k=1

s(k)∑
i=1

Λk
i x

(k)
ii

 .

This extends to a unique state onF . It is called the product state onF . Note that the tracial state on
F is the product state withΛn

i = 1/2 for all i ≤ 2, n ∈ N. note that ifx ∈ Ms(n)! andy ∈ Ms(n)!
c,

thenφΛ(xy) = φΛ(x)φΛ(y).

Remark.For eachλ ∈ [0, 1/2] we chooseΛ = {Λn} to be the sequence of convex combinations
Λn

1 = λ, Λn
2 = 1− λ, for all n ∈ N.

Let φλ be the product state associated withΛ and let(πλ,Hλ, ξλ) be the cyclic representation ofF
associated withφλ. We already know that

π0(F)cc = B(H0),

π1/2(F)cc = factor of typeII1.

5.3. Theorem. Each product state of a Glimm algebra is factorial, i.e. gives rise to a factor repre-
sentation.
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Proof. Let φΛ be a product state onA∞ of rank{s(n)}. Let z ∈ Z (πΛ(A∞)cc). By Kaplansky’s
density theorem there exists a sequence{yk} in A∞ with ‖yk‖ ≤ ‖z‖ andπΛ(yk) → z weakly. Let
Us(n)! denote the unitary group ofMs(n)!. This is a compact group with Haar measuredu. Let

zk =

∫
Us(n)!

du uyku
∗, for fixedn.

zk commutes withMs(n)!, and for eachu ∈ Us(n)! we haveπΛ(uyku
∗)→ πΛ(u)zπΛ(u∗) = z weakly.

Thereforeπ(zk)→ z weakly by the Lebesgue dominated convergence theorem.

So for everyx, y ∈Ms(n)! we have

(zξx, ξy) = lim (π(zk)ξx, ξy)

= limφΛ(y∗zkx)

= limφΛ(zk)φΛ(y∗x)

= (zξΛ, ξΛ) (ξx, ξy) .

This holds for anyn so z = (zξΛ, ξΛ) 1, so thatz is a multiple of 1. ThereforeπΛ(A∞)cc is a
factor.

Remark.Let Π be the group of permutations ofN which leave all but a finite number of elements
fixed. For at ∈ Π we define a unitary operator by

ut : H2n −→ H2n

ut(v1 ⊗ · · · ⊗ vn) = vt(1) ⊗ · · · ⊗ vt(n).

Fix a sequence{un} ⊂ {ut : t ∈ Π} such that the permutationtn corresponding toun satisfies
tn(i) > n ∀i ≤ n. It is clear thatφλ(utxu∗t ) = φλ ∀x ∈ F , t ∈ Π.

5.4. Lemma. Letx ∈ F , thenπλ(unxu∗n)→ φλ(x)1 weakly.

Proof.

φλ(z
∗unxu

∗
ny) = φλ(unxu

∗
nz
∗y)

= φλ(unxu
∗
n)φλ(z

∗y)

for all x, y, z ∈ M2k andn ≥ k. By continuityφλ(z∗unxu∗ny) → φλ(x)φλ(z
∗y) for all x, y, z ∈ F .

Therefore(πλ(unxu
∗
n)ξy, ξz) → φλ(x) (ξy, ξz). Now {πλ(unxu∗n)} is bounded and weakly conver-

gent on a dense set of vectors. Thereforeπλ(unxu
∗)→ φλ(x)1 weakly.

5.5. Lemma. Let ψ be a positive functional onF with a normal extension toπλ(F)cc for some
λ ∈ [0, 1/2]. Suppose also thatψ(utxu

∗
t ) = ψ(x) ∀x ∈ F , t ∈ Π. Thenψ is a scalar multiple ofφλ.

Proof. ψ is weakly continuous on bounded sets inπλ(F) so by the lemmaψ(x) = ψ(unxu
∗
n) →

φλ(x)ψ(1), thereforeψ = ψ(1)φλ.

5.6. Theorem. The von Neumann algebrasMλ = πλ(F)cc, for 0 < λ < 1/2, are factors of
typeIII.
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Proof. EachMλ is a factor by a previous result. Letτ be a normal, faithful, semi-finite trace onMλ.
Thus there exists a unique positive operatorh onHλ such thatφλ(x) = τ(hx). Nowh is unique and

τ(πλ(u
∗
t )hπλ(ut)x) = τ(hπλ(ut)xπλ(u

∗
t ))

= φλ(πλ(ut)xπλ(u
∗
t ))

= φλ(x),

soπλ(u∗t )hπλ(ut) = h for all t ∈ Π.

Pick ε > 0 and putψε(·) = τ(h(ε + h)−1·). h(ε + h)−1 commutes with allπλ(ut) so we have
ψε(πλ(utxu

∗
t )) = ψε(πλ(x)). Thereforeψε = ψε(1)φλ.

Choosex ∈ (Mλ)+ such thatτ(x) < ∞ andφλ(x) = ∞. This is possible sinceτ is semi-finite.
Then

ψε(1)φλ(x) = ψε(x) = τ(h(ε+ h)−1x)→ τ(x).

Thereforeψε(1)→ α <∞ asε→ 0, and for anyx ∈ (Mλ)+ we have

αφλ(x) = limψε(1)φλ(x)

= lim τ(h(ε+ h)−1x)

= τ(x).

Thereforeτ(x) = αφλ. But we know thatφλ is not a trace whenλ 6= 1/2, so there is a contradiction.
ThereforeMλ is of typeIII.

5.3 Matn (A)

Definition. LetA be a Banach algebra. LetMatn (A) denote then×nmatrix algebra overA. Then
Matn (A) can be made into a Banach algebra in a number of equivalent ways.

Definition. DefineGLn(A) to be the group of invertible elements inMatn (A) which are congruent
to 1n modMatn (A).

Remark.If A has a unit, thenGLn(A) is isomorphic to the group of invertible elements ofMatn (A).

Definition. LetA be aC∗ algebra. DefineUn(A) to be the group of unitary elements inMatn (A+)
which are congruent to1n modMatn (A).

Definition. Mat∞ (A) is the inductive limitMat∞ (A) = lim→Matn (A) with the obvious choice
of isometric inclusions.

Definition. GL∞(A) = lim→GLn(A).



Chapter 6

Automorphism Groups

6.1 Automorphisms and Invariant States

Remark.It is necessary to fix some notation and basic ideas from the theory of locally compact
groups. LetM(G) denote the Banach space of bounded complex Radon measures on a locally
compact groupG, identified withC0(G)′. M(G) possesses convolution and involution but is not in
general aC∗ algebra;∫

f(s)d(µ× ν)(s) =

∫∫
f(ts)dν(s)dµ(t), f ∈ C0(G)∫

f(s)dµ∗(s) =

∫ [
f ∗(s−1)dµ(s)

]∗
, f ∈ C0(G).

Definition. A unitary representation(u,H) of G is a homomorphismt 7→ ut of G into the unitary
group ofB(H), which is continuous in the weak topology onB(H). Note that the weak, ultra-weak,
and strong topologies coincide on the unitary group ofB(H). The representation is called uniformly
continuous if it is continuous in the norm topology forB(H).

Definition. The universal representation(πu,Hu) ofL1 (G)dg is the direct sum of all non-degenerate
representations ofL1 (G)dg. The groupC∗ algebra ofG,C∗(G), is the norm closure ofπu(L1 (G) dg)
in B(Hu).

Remark.By a representation of a Banach algebra, here we mean an involution-preserving homomor-
phism intoB(H), for a Hilbert spaceH.

Definition. For eachµ ∈ M(G) andf ∈ L2 (G) dg the convolutionµ × f is in L2 (G)dg. Define
the map

λ : M(G) −→ B(L2 (G) dg)

λ(µ)f = µ× f.

It is easy to check that it is a representation ofM(G). We call it the regular representation.

Remark.We can identify the points ofG with the point measuresδs, s ∈ G. The restriction ofλ to
the point measures is thus identified with the unitary representations→ λs of G onL2 (G)dg given
by

(λsf)(t) = f(s−1t), f ∈ L2 (G) dg

31
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Definition. The group von Neumann algebra forG,M(G), is the weak closure ofλ(L1 (G) dg) in
B(L2 (G)dg).

Definition. SupposeA is a C∗ algebra withA ⊂ L∞ (G) dg and thatA is invariant under left
translation. We say that a statem onA is a left-invariant mean ifm(λsf) = m(f) for all f ∈ A.

Definition. If there exists a left-invariant mean onL∞ (G)dg then we say thatG is amenable.

Definition. Let UC[(G) denote the algebra of bounded uniformly continuous functions onG. Let
C[(G) denote the algebra of bounded continuous functions onG.

6.1. Theorem. LetG be a locally compact group. Then T.F.A.E.

1. G is amenable.

2. There exists a left-invariant mean onC[(G).

3. There exists a left-invariant mean onUC[(G).

4. There exists a state onL∞ (G)dg,m, such thatm(µ × f) = µ(G)m(f) for eachµ ∈ M(G)
andf ∈ L∞ (G) dg.

Proof. See [Ped79].

6.2. Theorem.G is amenable if and only if the regular representation is faithful onC∗(G).

Proof. See [Ped79].

Remark.When we speak of the Haar measure onG, we mean, for example, the left Haar measure
so thatd(ts) = ds. There is also a right Haar measure, and it is connected to the left Haar measure
by the modular function∆ : G −→ R+, d(st) = ∆(t)ds, d(s−1) = ∆(s)−1ds.

Definition. A C∗-dynamical system is a triple(A, G, α) with a C∗ algebraA, a locally compact
groupG, and a continuous homomorphismα : G −→ Aut (A). Aut (A) is equipped with the
topology of pointwise convergence, so for eachA ∈ A α(A) : G −→ Aut (A) given byt 7→ αt(A)
is continuous. WhenG andA are separable we call this a separable dynamical system.

Remark.WhenM is a von Neumann algebra we consider the topology of pointwise weak conver-
gence onAut (M). This is equivalent to pointwise ultra-weak convergence and pointwise strong
convergence since these coincide on the unitary group ofM and the unitary group is stable under
Aut (A) and generatesM linearly.

Definition. A W ∗-dynamical system is a triple(M, G, α) with α : G −→ Aut (M) continuous in
the topology of pointwise weak convergence.

Definition. A covariant representation of aC∗-dynamical system(A, G, α) is a triple (π, u,H)
where(π,H) is a representation ofA, and(u,H) is a unitary representation ofG, and we have
π(αt(A)) = utπ(A)u∗t .
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Remark.Let (A, G, α) be aC∗-dynamical system. LetK(G,A) be the space of continuous func-
tions of compact support fromG toA. Define involution and convolution onK(G,A) by

y∗(t) = ∆(t)−1αt(y(t−1)∗),

(y × z)(t) =

∫
y(s)αs(z(s−1t))ds.

Define‖y‖1 =
∫
‖y‖ dt. ThenK(G,A) is a normed algebra with isometric involution. Denote its

completion byL1 (G)A.

LetA ∈ A andf ∈ L1 (G) dg. We can defineA⊗ f ∈ L1 (G)A such that(A⊗ f)(t) = Af(t). The
span of such elements is dense inL1 (G)A.

6.3. Theorem. If (π, u,H) is a covariant representation of(A, G, α), then there exists a non-degenerate
representation(π × u,H) ofL1 (G)A such that

(π × u)(y) =

∫
π(y(t))utdt for all y ∈ K(G,A).

Moreover, the correspondence(π, u,H) → (π × u,H) is a bijection onto the set of non-degenerate
representations ofL1 (G)A.

Proof. See [Ped79].

Definition. The universal representation(πu,Hu) of L1 (G)A is the direct sum of all non-degenerate
representations ofL1 (G)A.

Definition. The crossed product of(A, G, α) is the norm closure ofπu(L1 (G)A) in B(Hu). It is
denote byG×α A.

Remark.Now we will introduce some ideas due to Störmer which have direct physical relevance.
See Refs. [Sto69, Sto67, DKS69].

Definition. Let Conv (W ) denote the smallest convex subset of the vector spaceV ⊃ W containing
W . We say thatG is represented as a large group of automorphisms ofA if, for eachG-invariant
stateφ, we have

weak closure{πφ(Conv (αG(A)))}
⋂

πφ(A)c 6= ∅, ∀A ∈ A.

Definition. We say that theC∗-dynamical system(A, G, α) is asymptotically abelian if there is a
netΛ ⊂ G such that

‖Aαt(B)− αt(B)A‖ → 0 ast→∞ in Λ.

We say that it is weakly asymptotically abelian if we have

φ(Aαt(B)− αt(B)A)→ 0 ast→∞ in Λ, for anyφ ∈ A′.

6.4. Lemma. Let (A, G, α) be a weakly asymptotically abelianC∗-dynamical system. ThenG is a
large group of automorphisms.
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Proof. Let φ be an invariant state andA ∈ A. Let z denote any weak limit of the bounded net
{πφ(αt(A)) : t ∈ Λ}. Then clearlyz is in the weak closure of{πφ(Conv (αG(A))). Moreover, for
anyB ∈ A andψ in the pre-dual ofπφ(A)cc, we have

ψ(zπφ(B)− πφ(B)z) = limψ(πφ(αt(A)B −Bαt(A)))

= 0

Thereforez ∈ πφ(A)c. SoG is large.

Definition. If φ is aG-invariant state ofA, then we say thatφ is asymptotically multiplicative with
respect to the netΛ if

φ(αt(A)B)→ φ(A)φ(B) ast→∞ in Λ.

Such states are also called strongly clustering or strongly mixing.

6.5. Theorem. Let(A, G, α) be a weakly asymptotically abelianC∗-dynamical system and consider
aG-invariant stateφ onA, with covariant cyclic representation(πφ, uφ,Hφ, ξφ). Then T.F.A.E.

1. φ is asymptotically multiplicative.

2. φ is an extreme point of the set ofG-invariant states onA, and for eachA ∈ A the net
{πφ(αt(A)) : t ∈ Λ} is weakly convergent toφ(A) · 1 in B(Hφ).

3. The net
{
uφt : t ∈ Λ

}
is weakly convergent inB(Hφ) to the one-dimensional projection on

Cξφ.

Proof. See [Sto69, Sto67, DKS69].

6.6. Corollary. Let (A, G, α) and φ be as above. Ifφ is a factor state, then it is asymptotically
multiplicative.

6.7. Theorem. Let (A, G, α) be aC∗-dynamical system withG a large group of automorphisms.
Let φ be aG-invariant factor state with cyclic covariant representation(πφ, u

φ,Hφ, ξφ). LetM =
πφ(A)cc, and letφ̃ be the vector state onB(Hφ) determined byξφ. Then

1. M is finite⇐⇒φ̃ is a trace onM.

2. M is semi-finite but infinite⇐⇒φ̃ is a trace onMc, but not onM.

3. M is typeIII ⇐⇒φ̃ is not a trace onMc.

6.8. Theorem. Let (A, G, α) be a weakly asymptotically abelianC∗-dynamical system withG a-
belian, and letφ be aG-invariant factor state ofAwith cyclic covariant representation(πφ, uφ,Hφ, ξφ).
LetM = πφ(A)cc, and letφ̃ be the vector state onB(Hφ) determined byξφ. Then

1. M = C · 1⇐⇒φ is multiplicative.

2. M = B(Hφ), dimHφ =∞⇐⇒φ is a pure state but not multiplicative.
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3. M is typeII1⇐⇒φ is a trace but not multiplicative.

4. M is typeII∞⇐⇒φ is a trace onMc butφ is neither pure nor a trace.

5. M is typeIII ⇐⇒φ̃ is not a trace onMc.

Remark.In the case thatG is abelian we have a zoo of results. These results can be thought of
as harmonic analysis on operator algebras. They will lead us to the Tomita-Takesaki theory, the
introduction of complex function theoretic techniques for one-parameter groups (KMS states, etc.),
and a classification of factors of typeIII.

Remark.First we want to associate subsets of the dual group ofG to subspaces of a Banach space
X, whenG acts as isometries onX. WhenX is aC∗ algebra andG acts as automorphisms we will
be able to construct a spectral measureµ on the dual group withµ(Ω) corresponding to the support
projection of the subspace associated toΩ. When this happens we will be able to construct a unitary
representation ofGwhich, under certain conditions, is covariant for the automorphism representation
of G.

Definition. LetX andX∗ be two Banach spaces in duality via a bilinear form〈·, ·〉. This means

• If x ∈ X then〈x, ·〉 ∈ X∗′.

• If ξ ∈ X∗ then〈·, ξ〉 ∈ X ′.

• The mapsx 7→ 〈x, ·〉 andξ 7→ 〈·, ξ〉 are isometries ofX andX∗ onto weak-* dense subspaces
of X∗

′ andX ′ respectively.

Let Bσ(X) andBσ(X∗) denote the bounded linear operators which are continuous in theσ(X,X∗)
andσ(X∗, X) topologies. Note that ifU ∈ B(X) thenU ∈ Bσ(X) if and only ifUT ∈ B(X∗).

A representation of a locally compactG onX is aσ(X,X∗) continuous homomorphismt 7→ αt of
G onto the group of invertible elements inBσ(X). We say thatα is an integrable representation if
for eachµ ∈M(G) there is a (necessarily unique)αµ ∈ Bσ(X) such that

〈αµ(x), ξ〉 =

∫
〈αt(x), ξ〉 dµ(t), ∀x ∈ X, ξ ∈ X∗.

Note thatαT is integrable wheneverα is integrable.

6.9. Lemma. LetX be a Banach space andX∗ = X ′. Let h : t 7→ αt be a homomorphism of a
locally compact groupG into the group of invertible isometries onX such thatt 7→ αt(x), x ∈ X,
is norm continuous. Thenh is an integrable representation ofG onX.

Proof. See the appendix of [Ped79].

Definition. Let G be a locally compact abelian group and letΓ denote its dual group. Denote the
unit in Γ by θ. Fort ∈ G andτ ∈ Γ let (t, τ) denote the value ofτ at t and writeµ̂(t) =

∫
(t, τ)dµ(t)

for eachµ ∈M(G), i.e. the inverse Fourier transform.

Let K1(G) be the dense ideal ofL1 (G)dg consisting of functions such that̂f has compact support
in Γ. LetX andX∗ be as introduced previously and letα be an integrable representation ofG onX.
For each openΩ ⊆ Γ we define the spectralR-subspace

Rα(Ω) = σ(X,X∗)− closure in X of the linear subspace
{
αf (x) : x ∈ X, f ∈ K1(G), suppf̂ ⊆ Ω

}
.
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For each closedΛ ⊆ Γ the spectralM -subspace is

Mα(Λ) = annihilator ofRα′(Γ|Λ).

In other words,

x ∈Mα(Λ)⇐⇒
〈
x, αTf (ξ)

〉
= 0 ∀ξ ∈ X∗, f ∈ K1(G) with suppf̂ ⊆ Γ|Λ.

6.10. Theorem.LetRα andMα be as above. Then

1. If Ω1 ⊂ Ω2 thenRα(Ω1) ⊂ Rα(Ω2).

2. If Λ1 ⊂ Λ2 thenMα(Ω1) ⊂Mα(Ω2).

3. Theσ-closure of
∑

iR
α(Ωi) is equal toRα(∪iΩi).

4. ∩iMα(Λi) = Mα(∩iΛi).

5. If Ω ⊂ Λ thenRα(Ω) ⊂Mα(Λ).

6. If Λ ⊂ Ω thenMα(Λ) ⊂ Rα(Ω).

7. If Λ = ∩iΩi = ∩iΩ̄i thenMα(Λ) = ∩iRα(Ωi).

8. If Ω = ∪iΛi = ∪iintΛi thenRα(Ω) = σ-closure
∑

iM
α(Λi).

9. Rα(∅) = Mα(∅) = {0}; Rα(Γ) = Mα(Γ) = X.

Proof. See [Ped79].

Definition. From the fourth point above, there exists a smallest closed setΛ ⊂ Γ such thatMα(Λ) =
X. We callΛ the Arveson spectrum ofα and denote itSpec (α).

6.11. Theorem.Letα be an integrable representation ofG onX. For eachσ ∈ Γ, T.F.A.E.

1. σ ∈ Spec (α).

2. Rα(Ω) 6= 0 for every nbhd.Ω of σ.

3. There exists a net{xi} in the unit sphere ofX such that‖αt(xi)− (t, τ)xi‖ → 0 uniformly on
compact subsets ofG.

4. For everyµ ∈M(G) we have|µ̂| ≤ ‖αµ‖.

5. For everyf ∈ L1 (G) dg we have|f̂(σ)| ≤ ‖αf‖.

6. If f ∈ L1 (G) dg andαf = 0 thenf̂(σ) = 0.

Proof.
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1=⇒2 If Rα(Ω) = 0, thenSpec (α) ⊂ Γ\Ω. Conversely ifσ 6∈ Spec (α) then there exists an open
nbhd.Ω of σ with Spec (α) ∩ Ω = ∅. ThereforeRα(Ω) = 0.

2=⇒3 This follows from the following technical lemma which we do not prove: Forσ ∈ Γ, ε > 0,
andK a compact subset ofG, there exists a compact nbhd.Λ of σ such that‖αt(x)− (t, σ)x‖ <
ε ‖x‖ ∀t ∈ K,x ∈Mα(Λ).

3=⇒4 Givenµ andε > 0 there is a compactK ⊂ G such that|µ(G\K)| < ε. Assumexi ∈ X and
‖αt(xi)− (t, σ)xi‖ < ε for all t ∈ K; then

|µ̂(σ)| = ‖µ̂(σ)xi‖

=

∥∥∥∥∫ (t, σ)xidµ(t)

∥∥∥∥
≤
∥∥∥∥∫ (αt(xi)− (t, σ)xi)dµ(t)

∥∥∥∥+

∥∥∥∥∫ αt(xi)dµ(t)

∥∥∥∥
≤ ε|µ(K)|+ 2|µ(G\K) + ‖αµ(xi)‖
≤ ε ‖µ‖+ 2ε+ ‖αµ‖ .

Thereforêµ(σ) ≤ ‖αµ‖.

4=⇒5 Obvious.

5=⇒6 Obvious.

6=⇒2 Let Ω be a nbhd. ofσ. There existsf ∈ K1(G) with supp(f̂) ⊂ Ω, f̂(σ) = 1. Then by
assumptionαf (x) 6= 0 for somex ∈ X, and soRα(Ω) 6= 0.

6.12. Theorem.Letα be an integrable representation ofG onX. If A is the commutative Banach
algebra inB(X) generated byαf , f ∈ L1 (G) dg, then the Arveson spectrum ofα is homeomorphic
to the Gelfand spectrum ofA.

Proof. The dual of the homomorphismα : L1 (G) dg −→ A defines a continuous injectionα∗ :

Â −→ Γ sinceΓ is the spectrum ofL1 (G)dg. Â is locally compact soα∗ is a homeomorphism onto
its image. From the previous proposition thenσ ∈ α∗(Â) if and only if σ ∈ Spec (α).

6.13. Theorem (Compact Arveson Spectrum).Let α be an integrable representation ofG onX.
Then T.F.A.E.

1. Spec (α) is compact.

2. α is uniformly continuous, i.e.‖1− αt‖ → 0 ast→ 0.

Proof.

1=⇒2 Let f ∈ K1(G) with f̂ = 1 on an open setΩ containingSpec (α). Thenαf (x) = x,∀x ∈
Rα(Ω), and sinceRα(Ω) = X, αf = 1. But then

‖1− αt(x)‖ ≤ ‖f − δt × f‖1 ‖x‖ , ∀x
=⇒ ‖1− αt‖ → 0 ast→ 0.
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2=⇒1 Let (fλ) be an approximate identity forL1 (G)dg.

‖x− αt(x)‖ ≤
∫
‖αt(x)− x‖ fλ(t)dt

≤
∫
‖αt − 1‖ fλ(t)dt ‖x‖ .

Thereforeαfλ → 1 so the Banach algebra generated byα(L1 (G) dg) contains the identity, and
soSpec (α) is compact by the previous theorem.

6.14. Theorem (Stone).Let t 7→ ut be a unitary representation of an abelian groupG on a Hilbert
spaceH. There exists a unique spectral measureµ on the Borel sets ofΓ, with values inB(H), such
that

ut =

∫
(t, τ)dµ(τ), ∀t ∈ g.

Proof. Let π(f) =
∫
utf(t)dt for anyf ∈ L1 (G) dg. Thenπ is a *-representation ofL1 (G)dg into

B(H). Since eachπ(f) is a normal operator‖π(f)‖ ≤
∥∥∥f̂∥∥∥. Thereforeπ extends by continuity to a

representation of theC∗ algebraC0(Γ). Restrictingπ to the projections in the Borel functions onΓ
we obtain a spectral measureµ onΓ satisfying the required relation.

Definition. Let I be an ideal in theC∗ algebraA. We say thatI is essential inA if each non-zero
closed ideal ofA has a non-zero intersection withI.

Remark.Remember that the groups in this section are abelian. IfB is aG-invariantC∗ algebra of
A, then we can consider the dynamical system(B, G, α|B). ClearlySpec (α|B) ⊂ Spec (α).

Definition. LetHα(A) denote the set ofG-invariant, hereditary, non-zeroC∗-subalgebras ofA. Let
Hα
B(A) denote the subset consisting of algebrasB inHα(A) such that the closed ideal ofA generated

byB is essential inA.

The Connes spectrum ofα is

Γ(α) =
⋂

Spec (α|B) , B ∈ Hα(A).

The Borchers spectrum ofα is

ΓB(α) =
⋂

Spec (α|B) , B ∈ Hα
B(A).

ObviouslyΓ(α) ⊂ ΓB(α).

Definition. If (M, G, α) is aW ∗-dynamical system then we define

Γ(α) =
⋂

Spec (α|pMp) , p ∈ {non-zeroG-invariant projections},

ΓB(α) =
⋂

Spec (α|pMp) , p ∈ {non-zeroG-invariant projections withc(p) = 1}.
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6.15. Theorem (Connes Subgroup).Let (A, G, α) be an abelianC∗-dynamical system. Ifσ1 ∈
Γ(α) andσ2 ∈ Spec ((α), thenσ1 + σ2 ∈ Spec (α). Moreover,Γ(α) is a closed subgroup ofΓ.

Proof. Let Ω be a nbhd. ofσ1 + σ2. Then there are nbhds.Ω1 and Ω2 of σ1 andσ2 such that
Ω1 + Ω2 ⊂ Ω. NowRα(Ω2) is non-trivial by assumption; letx2 6= 0 be fromRα(Ω2). LetB denote
the hereditaryC∗-subalgebra ofA generated by the orbit{αt(x∗2x2) : t ∈ G}. If x ∈ B, x 6= 0, then
αt(x

∗
2x2) 6= 0 for somet ∈ G. B isG-invariant so there is a non-zero elementx ∈ Rα|B(Ω1). Thus

αt(x2)x1 6= 0 fro somet ∈ G.

αt(x2) ∈ Rα(Ω2) =⇒αt(x2)x1 ∈ Rα(Ω1 + Ω2) =⇒Rα(Ω) 6= 0. This holds for everyΩ a nbhd. of
σ1 + σ2, soσ1 + σ2 ∈ Spec (α).

Now, if σ1, σ2 ∈ Γ(α), by the above construction we knowσ1 +σ2 ∈ Spec (α|B) for all B ∈ Hα(A).
Thereforeσ1 + σ2 ∈ Γ(α). SinceΓ(α) is the intersection of symmetric, closed sets, it is a closed
subgroup ofΓ.

6.16. Theorem (Z subgroups ofΓB). Let (A, G, α) be an abelianC∗-dynamical system. Ifσ ∈
ΓB(α) thennσ ∈ ΓB(α),∀n ∈ Z.

Proof. We will prove by induction that for any nbhd.Ω of σ, anyB ∈ Hα
B(A), and anyn ∈ Z

there exist elementsx1, . . . , xn in Rα(Ω) ∩ B such thatx1x2 · · ·xn 6= 0. This is true forn = 1 since
σ ∈ ΓB(α).

Assume the induction step forn. Let {Ci} be the maximal collection of algebras inHα(B) such that
the ideals generated by theCi are mutually orthogonal and such that for eachi there is anxi ∈ Rα(Ω)
such thatCi is the hereditaryC∗-algebra generated by the orbit{αt(x∗ixi) : t ∈ G}. Let C = ⊕Ci.
EitherCi ∈ Hα

B(B) or we can find (by maximality) a closed,G-invariant idealI ∈ B, orthogonal to
the ideal generated byC such thatC + I ∈ Hα

B(B). In either case,I = 0 or I 6= 0, we must have
Rα(Ω) ∩ I = 0. Otherwise we contradict maximality of{Ci}.
C + I ∈ Hα

B(B) andB ∈ Hα
B(B), soC + I ∈ Hα(B). By the induction hypothesis there exist

x1, . . . , xn inRα(Ω)∩C+I such thaty = x1x2 · · ·xn 6= 0. SinceRα(Ω)∩I = 0, xk ∈ Rα(Ω)∩C∀k.
Thusy ∈ C. But thenαt(xi)y 6= 0 for somet ∈ G and somei sinceC = ⊕Ci. Sinceαt(xi) ∈
Rα(Ω) ∩ B we have established the claim forn+ 1, and thus for alln ∈ N.

Now assumen > 0, sinceΓB(α) is a symmetric set. LetΩn be a nbhd. ofnσ, and chooseΩ a nbhd.
of σ such thatΩ + · · · + Ω ⊂ Ωn. GivenB ∈ Hα

B(B) we obtainx1, . . . , xn in Rα(Ω) ∩ B such that
y = x1x2 · · ·xn 6= 0. Theny ∈ Rα(Ω+· · ·+Ω)∩B ⊂ Rα(Ωn)∩B,∀n. Thereforenσ ∈ Spec (α|B).
ButB was arbitrary.

6.2 KMS States

Remark.Now we will further specialize to the caseG = R. States will be characterized by the
behaviour of their correlation functions in the complex frequency plane. Roughly speaking, the
growth atImω > 0 controls the growth fort < 0. This will introduce complex function techniques.

Definition. Let (A, G, α) be aC∗-dynamical system. We say thatA ∈ A is analytic forα if the
functiont 7→ αt(A) has an extension to an analytic functionζ 7→ αζ(A), ζ ∈ C.

6.17. Lemma. The set of analytic elements of aC∗-dynamical system forA forms a dense *-
subalgebra ofA. The set of analytic elements of aW ∗-dynamical system forM forms aσ-weakly
dense *-subalgebra ofM.
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Proof. Density follows from the approximation, for anyA ∈ A,

An = π−1/2n1/2

∫
αt(A)e−nt

2

dt,

AN → A asn→∞, andAn is analytic. Similarly for theW ∗ case.

Definition. Given aC∗-dynamical system(A,R, α) we say that a stateφ onA is a KMS state forβ,
β ∈ (0,∞), if for anyA ∈ Aanalytic,B ∈ A,

φ(Bαζ+iβ(A)) = φ(αζ(A)B), ζ ∈ C.

φ is called KMS forβ = 0 if it is an α-invariant trace. (chaotic state)
φ is called KMS forβ =∞ if |φ(Bαζ(A))| ≤ ‖A‖ ‖B‖ for Im ζ ≥ 0. (ground state)

6.18. Theorem.Let (A,R, α) be aC∗-dynamical system. Fixβ ∈ (0,∞]. Thenφ is a β-KMS
state if and only if for everyA,B ∈ A there exists a bounded continuous functionf : Ωβ −→ C,
Ωβ = {ζ ∈ C : 0 ≤ Im ζ ≤ β}, such thatf is holomorphic onint(Ωβ) and one of the following is
true.

• If β <∞ f(t) = φ(Bαt(A)), f(t+ iβ) = φ(αt(A)B).

• If β =∞ f(t) = φ(Bαt(A)), t ∈ R, ‖f‖ ≤ ‖x‖ ‖y‖.

Proof. Obviously the second part implies thatφ is β-KMS. Assumeφ is β-KMS. Let {An} be the
sequence of analytic elements converging toA ∈ A and letB ∈ A. Definefn(ζ) = φ(Bαζ(A)) for
β <∞. Then the{fn} are analytic andfn(ζ + iβ) = φ(αζ(A)B).

Now eachfn is bounded onΩβ, |fn(ζ)| ≤ ‖B‖ ‖αit(An)‖. By the Phragmen-Lindelöf theorem we
have

|fn(ζ)− fm(ζ)| ≤ sup
z∈∂Ωβ

|fn(z)− fm(z)|

≤ sup
t
|φ(Bαt(An − Am))| ∨ |φ(αt(An − Am)B)|

≤ ‖B‖ ‖An − Am‖ .

Therefore the{fn} are uniformly convergent to a function bounded and continuous onΩβ and holo-
morphic onint(ΩB). On the boundaryf(t) = φ(Bαt(A)), f(t+ iβ) = φ(αt(A)B), t ∈ R.

If β = ∞ definefn(ζ) = φ(Bαt(A)) and the KMS condition at∞ gives |fn(ζ) − fm(ζ)| ≤
‖An − Am‖ ‖B‖ for Im ζ ≥ 0 and again thefn converge to anf with the required properties.

6.19. Theorem.Let (A,R, α) be aC∗-dynamical system and letφ be aβ-KMS state onA. Thenφ
is α-invariant.

Proof. We haveφ(αζ+iβ(A)) = φ(αζ(A)) for β > 0. Thusf : ζ 7→ φ(αζ(A)) is bounded onΩβ

(previous result) and periodic with periodiβ. Thereforef is a constant. Since the analytic elements
are dense inA, φ is α-invariant by continuity.

If β = 0 theα-invariance is by definition.

If β = ∞ we havef : ζ 7→ φ(αζ(A)) is such that|f(ζ)| ≤ ‖A‖ whenIm ζ ≥ 0. Now φ = φ∗, so
φ(αζ(A))∗ = φ(αζ∗(A

∗)), so forIm ζ < 0 we have|f(ζ)| ≤ φ(αζ∗(A
∗))∗ ≤ ‖A‖. Thereforef is

bounded, thereforef is a constant andφ is α-invariant.
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6.20. Theorem (Ground States and Hamiltonians).Let (A,R, α) be aC∗-dynamical system and
let φ be a state onA. Then T.F.A.E.

1. φ is a KMS state withβ =∞ (ground state).

2. There exists a positive operatorh onHφ, not necessarily bounded, withhξφ = 0, andexp(ith)πφ(A) exp(−ith) =
πφ(αt(A)),∀t ∈ R, A ∈ A.

3. φ is α-invariant, and if(πφ, uφ,Hφ, ξφ) is the cyclic covariant representation associated with
φ thenSpec

(
uφ
)
⊂ R+.

Proof.

2=⇒1 Sinceh ≥ 0, for anyA,B ∈ A we can define a functionf on the upper half plane,Ω∞,
holomorphic and continuous on the boundary,

f(ζ) = (exp(iζh)ξA, ξB) .

Clearly |f | ≤ ‖A‖ ‖B‖. Also, f(t) = φ(B∗αt(A)) for all t ∈ R, soφ satisfies the KMS
condition withβ =∞.

1=⇒3 We know that we can writeut = exp(ith) for some self-adjointh. If A is analytic then
ξA is analytic forexp(ith) so f : ζ 7→ (exp(iζh)ξA, ξA) is analytic;f(ζ) = φ(A∗αζ(A)).
By assumptionf(ζ) ≤ ‖A‖2 if Im ζ ≥ 0 then((exp(−h))sξA, ξA) ≤ ‖A‖2 for any s ≥ 0.
Thereforeexp(−h) ≤ 1, and soh ≥ 0 andSpec

(
uφ
)
⊂ R+.

3=⇒2 A computation shows that withuφt = expith, ξφ is in the domain ofh andhξφ = 0.

Remark.The above theorem says something which can be readily accepted by anyone familiar with
renormalization, but only after some realignment of religious ideas. It says that the Hamiltonian
generating the time evolution depends on the state chosen, and that it does not really exist indepen-
dently. As an example, consider a spin system. In the ordered phase the Hamiltonian contains an
interaction with an external field. However, in the disordered phase this interaction is irrelevant (in
the technical sense), and the construction corresponding to the above theorem would show this. The
“renormalization physics” is in some way already contained inside the algebraic approach.

Definition. Let (A,R, α) be aC∗-dynamical system. We say thatα is approximately inner if there
is a net{hλ} ⊆ A, hλ self-adjoint, such that

lim
λ
‖αζ(A)− exp(iζhλ)A exp(−iζhλ)‖ = 0

uniformly on compact subsets ofC.

6.21. Theorem.Let (A,R, α) be aC∗-dynamical system and assumeα is approximately inner and
1 ∈ A. ThenA has a ground state (KMS state withβ =∞).
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Proof. Let {hλ} be the net in the definition of approximately inner. Letαλt = Ad (exp(ithλ)).
Without loss, by adding a multiple of 1 if necessary,hλ ≥ 0 and0 ∈ Spec (hλ) for all λ.

Now there is a net of states{φλ} such thatφλ(hλ) = 0 for eachλ. Since the state space is compact
we can assume{φλ} is weak-* convergent to someφ. |φλ(Bαλζ (A))| ≤ ‖A‖ ‖B‖, if Im ζ ≥ 0.
Thereforeφλ is a ground state forαλ, applying theorem 6.18.

Moreover,

|φ(Bαζ(A))| ≤ |(φ− φλ)(Bαζ(A))|+ ‖B‖
∥∥αζ(A)− αλζ (A)

∥∥+ ‖A‖ ‖B‖
≤ ‖A‖ ‖B‖ in the limit of λ.

Thereforeφ is a ground state forα.

Remark.KMS states are physically interesting because the KMS condition can be substituted for
the Gibbs ansatz, and it makes sense immediately in infinite volume, without requiring a limiting
process. To see the equivalence for finite systems, letA be a finite-dimensional matrix algebra with
a canonical traceTr (·). Consider the state

φ(A) = Tr (ρA) /Tr (ρ) .

The automorphism group isαt(A) = eithAe−ith. By elementary calculation,φ satisfies the KMS
condition for someβ, if and only if ρ = exp(−βh).

6.3 Modular Group

Remark.It is a remarkable fact that von Neumann algebras carry hidden within themselves a kind of
“dynamical” information, in the form of anR-action. How this arises is the subject of the following.
This will lead to the classification of typeIII factors.

Definition. LetM be a von Neumann algebra on a separable Hilbert spaceH. Let T be a closed
operator onH. T is said to be affiliated toM if

ADom(T ) ⊆ Dom(T ), TA ⊇ AT, ∀A ∈Mc.

6.22. Lemma. LetT = U |T | be the polar decomposition ofT . Then T.F.A.E.

1. U and the spectral projectionsE|T |(·) belong toM.

2. T is affiliated toM.

Proof.

Definition. LetM be a von Neumann algebra on a separable Hilbert spaceH. Let Ω ∈ H be cyclic
and separating forM. Define two anti-linear operatorsS0, F0 by

S0AΩ ≡ A∗Ω, A ∈M,

F0BΩ ≡ B∗Ω, B ∈Mc.
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S0 andF0 are closable. Denote their closures byS andF respectively.S is called the Tomita operator
for (M,Ω). Furthermore we have

S∗0 = F F ∗0 = S,

S−1 = S, F−1 = F,

See Ref. [BW92, p. 32].

Definition. Let S = J∆1/2 be the polar decomposition of the Tomita operator. The anti-unitary
operatorJ is called the modular conjugation and the non-negative operator∆ is called the modular
operator.

6.23. Lemma.

1. ∆ = FS

2. ∆−1 = SF

3. F = J∆−1/2

4. J = J∗

5. J2 = 1

6. ∆−1/2 = J∆1/2J

Proof.

• ∆ = S∗S = FS. (FS)−1 = S−1F−1 = SF = ∆−1.

• S = S−1 = ∆−1/2J∗ = J∗J∆−1/2J∗. Therefore, by uniqueness of the polar decomposition,
J = J∗ andJ∆−1/2J∗ = J∆−1/2J = ∆1/2.

• J∗ = J =⇒ J2 = 1.

Definition. The strongly continuous unitary group defined by

∆it = exp(it ln ∆).

is called the modular group.

Example.Let H = L2 ([0, 1]) dx and letM be the algebra of functions bounded a.e. on[0, 1]
with pointwise multiplication.M acts onH as a commutative algebra of multiplication operators.
Ω(x) = 1 is a cyclic and separating vector forM. Then the Tomita operator is complex conjugation,
SAΩ = A∗Ω, and∆ = 1.
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Example.Let H andK be Hilbert spaces of dimensionn. Let {f1, . . . , fn} and{g1, . . . , gn} be
orthonormal bases forH andK respectively. LetM = B(H) ⊗ C1K, acting on the total space
H⊗K. Define the unit vectorΩ ∈ H ⊗K by

Ω =
n∑
j=1

ajfj ⊗ gj, aj > 0,
∑
j

|aj|2 = 1.

Note thatΩ is not an arbitrary unit vector inH⊗K, but is diagonal in the obvious basis.Ω is cyclic
and separating forM. The action ofM onH ⊗ K is generated by the following operators which
shuffle basis elements in the first factor,

Aj,s : fp ⊗ gl 7→ δj,pfs ⊗ gl.

The Tomita operator is given by

SAj,sΩ = A∗j,sΩ = As,jΩ = asfj ⊗ gs = S(ajfs ⊗ gj),

and so

S(fs ⊗ gj) =
as
aj

(fj ⊗ gs).

From this we have

∆(fs ⊗ gj) =

(
as
aj

)2

(fs ⊗ gj),

J(fs ⊗ gj) = (fj ⊗ gs).

Then the spectrum of∆ is

Spec (∆) = Spec
(
∆−1

)
=

n⋃
s,j=1

(
as
aj

)2

.

Example.LetM(G) be the group von Neumann algebra for a locally compact groupG. It is a result
that there is aσ-normal andσ-finite weightφe onM(G) such thatφe(x∗x) < ∞ if and only if
there is a left bounded elementf ∈ L2 (G) dg with λ(f) = x, and in this caseφe(x∗x) = ‖f‖2

2.
Furthermore the representation associated toφe is spatially equivalent to the regular representation.
See Ref. [Ped79, p. 236]. Now the unitary group associated toφe is given by

(utξ)(s) = ∆itξ(s), ξ ∈ L2 (G) dg, t ∈ R,

where∆ is the modular function of the groupG, which links left and right Haar measures.

Remark.The following is the fundamental result of Tomita-Takesaki theory. The most self-contained
proof is probably in [BR87, p. 94], which is what we follow. One lemma is required. A slightly dif-
ferent formalism is used in [Ped79, p. 377]. Ref. [BW92, p. 387] gives a proof in the approximately
finite dimensional (AF) case, and seems to follow [BR87] in exposition.
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6.24. Lemma. Letλ ∈ C,−λ 6∈ R+. LetB ∈Mc. Then there exists an elementAλ ∈M such that

A∗λΩ = (∆ + λ1)−1BΩ.

Furthermore we have

JBJ = ∆−1/2Aλ∆
1/2 + λ∆1/2Aλ∆

−1/2,

as a relation between bilinear forms onDom(∆1/2) ∩Dom(∆−1/2).

Proof. See Ref. [BR87, p. 91-94].

6.25. Theorem (Tomita-Takesaki).LetM be a von Neumann algebra with a cyclic and separating
vectorΩ. Let∆,J be the associated modular operator and modular conjugation. Then

JMJ =Mc,

∆itM∆−it =M, ∀ t ∈ R.

Proof. Givenλ > 0 andB ∈ B(H), define a quadratic form

Iλ(B) = λ−1/2

∫ ∞
−∞

dt
λit

eπt + e−πt
∆itB∆−it.

If φ, ψ ∈ Dom(∆1/2) ∩Dom(∆−1/2), define the function

f(λ) =
(
∆−1/2ψ, Iλ(B)∆1/2φ

)
+ λ

(
∆1/2ψ, Iλ(B)∆−1/2φ

)
=

∫ ∞
−∞

dt
λit

eπt + e−πt
[
λ−1/2

(
∆−1/2−itψ,B∆1/2−itφ

)
+ λ1/2

(
∆1/2−itψ,B∆−1/2−itφ

)]
.

Let ∆ =
∫
dE∆(µ)µ be a spectral decomposition for∆. Then we have

f(λ) =

∫ ∞
−∞

dt
λit

eπt + e−πt

∫
d2(E∆(µ)ψ,BE∆(ρ)φ)

{(
ρ

µλ

)1/2

+

(
µλ

ρ

)1/2
}∫ ∞

−∞

dt

eπt + e−πt

(
µλ

ρ

)it
=

∫
d2(E∆(µ)ψ,BE∆(ρ)φ)

= (ψ,Bφ) .

Therefore, as equality of bilinear forms onDom(∆1/2) ∩Dom(∆−1/2) we have

B = ∆−1/2Iλ(B)∆1/2 + λ∆1/2Iλ(B)∆−1/2.

From the lemma we have the existence ofA1 ∈Mc with

JA1J = ∆−1/2Aλ∆
1/2 + λ∆1/2Aλ∆

−1/2.

Then the above expression gives an inverse relation

Aλ = Iλ(JA1J).
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If B′ ∈Mc then, sinceAλ ∈M,

(ψ, [B′, Iλ(JA1J)]φ) = 0,∫ ∞
−∞

dt
eipt

eπt + e−πt
(
ψ,
[
B′,∆itJA1J∆−1/2

]
φ
)

= 0, ∀p ∈ R.

Therefore

∆itJA1J∆−it ∈Mcc =M.

Settingt = 0 givesJMcJ ⊆M. The symmetries of the conjugation then giveJMJ ⊆Mc. Using
J2 = 1 gives the first result. Finally, sinceJMcJ ⊆ M, anyA ∈ M has the formA = JA1J for
someA1 ∈Mc. Since∆itJA1J∆−it ∈M, we then have∆itA∆−it ∈M, which proves the second
claim.

Remark.The formal calculation here is that the Fourier transform provides an inverse for the map
A 7→ JAJ ∈Mc. The proof justifies this statement.

6.26. Theorem (Exterior Equivalence).Let φ andψ be faithful normal states on a von Neumann
algebraM. Letσφ

R
andσψ

R
be the associated modular groups. Then there exists a strongly continuous

one-parameter family of unitary operatorsut inM such that

1. σψt (x) = utσ
φ
t (x)u∗t , x ∈M, t ∈ R.

2. ut+s = utσ
φ
t (us), s, t ∈ R.

Proof. Consider the von Neumann algebraM⊗Mat2 (C). Define a faithful normal stateρ by

ρ

((
x11 x12

x21 x22

))
=

1

2
(φ(x11) + ψ(x22)) .

Let σρ
R

denote the modular group We haveσρt (x⊗ e11) = αt(x)⊗ e11 andσρt (y⊗ e22) = βt(y)⊗ e22

for x, y ∈ M, whereαt andβt satisfy the KMS condition for the statesφ andψ. By the KMS
uniqueness result thenαt = σφt andβt = σψt . Define

Wt ≡ σρt

(
0 0
1 0

)
=

(
at ct
ut bt

)
∈M⊗Mat2 (C) .

σφt (1) = σψt (1) = 1, so

W ∗
t Wt =

(
0 0
0 1

)
, WtW

∗
t =

(
1 0
0 0

)
.

Thereforeat = bt = ct = 0 andut ∈M is unitary. Furthermore(
0 0
us+t 0

)
= σρt+s

(
0 0
1 0

)
= σρs

[(
0 0
1 0

)(
ut 0
0 0

)]
.

Thereforeut+s = usσ
ρ
s(ut). Furthermore(

0 0

0 σψt (x)

)
= σρt

[(
0 0
1 0

)(
x 0
0 0

)(
0 1
0 0

)]
,

soσψt (x) = utσ
φ
t u
∗
t . Thereforeut is the desired unitary family.
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Definition. A unitary family ut satisfying the second condition of the above theorem is called a
unitary cocycle. Two automorphism groups connected by a unitary cocycle as above are called
exterior equivalent.

6.4 TypeIII Factors

Remark.LetM be aσ-finite von Neumann algebra. ThenM admits a faithful normal stateφ,
with associated modular groupσφ

R
. By the exterior equivalence theorem, any other modular group

associated with a faithful normal state onM will produce an exterior-equivalent dynamical system.
Therefore the Connes spectrumΓ(σφ

R
) is independent ofφ. So we can denote it byΓ(M). It is an

algebraic invariant forM.

Remark.The following theorem shows that the Connes spectrum is not sensitive to factors other than
typeIII.

6.27. Theorem. IfM is semifinite thenΓ(M) = {0}.

Remark.By a previous resultΓ(M) is a closed subgroup ofR. There are three cases.

1. Γ(M) = {0}.

2. Γ(M) = {n log λ : n ∈ Z}, with λ ∈ (0, 1).

3. Γ(M) = R.

As a matter of notation, call the first caseλ = 0 and the last caseλ = 1, since the subgroups of the
second case increase in size asλ→ 1. Therefore we have assigned a real numberλ ∈ [0, 1] to every
factor of typeIII. We say thatM is of typeIIIλ. This is the classification of (σ-finite) typeIII
factors.

Definition. Supposeφ is a normal state of a von Neumann algebraM. Sinceφ is normal there is
a smallest projectionp ∈ M such thatφ(p) = 1. Thenφ is faithful onpMp. Denote the modular
operator associated toφ|pMp by ∆φ and the modular group byσφ

R
. Then define

S(M) =
⋂

Spec (∆φ) ,

where the intersection is over all normal statesφ. The following theorem shows that, like the Connes
spectrum,S(·) is not sensitive to factors other than typeIII.

6.28. Theorem.LetM be a von Neumann algebra. IfM is typeIII then0 ∈ S(M). Otherwise
S(M) = {1}.

Proof. If 0 6∈ S(M) then there is some normal stateφ with associated projectionp such that0 6∈
Spec (∆φ). Since∆−1 = F∆J , we haveSpec (∆φ) = Spec

(
∆−1
φ

)
. Since0 6∈ Spec (∆φ), ∆φ must

be bounded. Thenσφ
R

is clearly uniformly continuous onpMp; thereforeσφ
R

is inner. SopMp is
semifinite. Sincep 6= 0,M is not typeIII.

Conversely supposeM is not typeIII. Then it contains a nonzero finite projectionp, and without
lossp is the support of some normal tracial stateφ. Then∆φ = 1, and soS(M) = {1}.
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Remark.The following lemma and theorem show that there is an explicit relation between the
Connes spectrum andS(·), again for theσ-finite case.

6.29. Lemma. Let ξ0 be a cyclic and separating vector for a von Neumann algebraM. Let ∆ be
the modular operator andσR be the modular group associated withξ0. Then for anys ∈ R we have
s ∈ Spec (σ) if and only ifes ∈ Spec (∆).

Proof. Let f ∈ L1 (R) dx andx ∈M. Then

f̂(log ∆)xξ0 =

∫
dt f(t) exp(it log(∆))xξ0

=

∫
dt f(t)∆itxξ0

=

∫
dt f(t)σt(x)ξ0

= σf (x)ξ0.

Thereforeσf (x) = 0 for all x ∈ M if and only if f̂(log ∆) = 0. But s ∈ Spec (σ) if and only if
σf 6= 0 for all f ∈ L1 (R) dx satisfyingf̂(log(es)) = f̂(s) 6= 0.

6.30. Theorem.LetM be aσ-finite von Neumann algebra and lets ∈ R. Thens ∈ Γ(M) if and
only if es ∈ S(M).

Proof. Let φ be a normal state ofM with support projectionp, modular groupσφ
R
, and modular

operator∆φ. Chooseψ a faithful normal state on(1 − p)M(1 − p) and consider the faithful state
ρ = 1

2
(φ+ ψ) onM. From the uniqueness of the modular group onpMp we have

σρt (x) = σφt (x), x ∈ pMp.

p is fixed byσρ
R
, so

Γ(M) = Γ(σρ) ⊂ Γ(σρ|pMp) = Γ(σφ).

Supposes ∈ Γ(M). Then by the lemmaes ∈ Spec (∆φ). Butφ was arbitrary soes ∈ S(M).

Conversely, letφ be a faithful normal state onM with modular groupσφ
R
. For each nonzero

projectionp which is fixed byσφ
R

we have thatσφ|pMp is the modular group associated with the
faithful normal stateφ(·)/φ(p) on pMp. So if s ∈ S(M) then it follows from the lemma that
s ∈ Spec

(
σφ|pMp

)
. Sincep was arbitrary,s ∈ Γ(σφ) = Γ(M).

6.31. Theorem (TypeIII Glimm Algebras). LetF be the fermion algebra. Letφλ be a permuta-
tion invariant product state on the fermion algebra, as in the theorem on the existence of typeIII
Glimm algebras,λ ∈ (0, 1/2). Then the factorMλ arising fromφλ is of typeIIIλ′, whereλ′ =
λ(1− λ)−1.

Proof. See Ref. [Ped79, p. 392].

6.5 Hyperfiniteness Again

6.32. Theorem (Murray-von Neumann). Up to algebraic isomorphism, there exists a unique hy-
perfiniteII1 factor.

6.33. Theorem (Connes).LetG be amenable. ThenM(G) is hyperfinite.



Chapter 7

Extensions

Definition. LetA, B, E beC∗ algebra s. Then a short exact sequence

0→ B → E → A → 0

is called an extension ofA byB. As such,B is isomorphic to an ideal inE , andE/B ∼= A.

Remark.The natural goal at this point is to introduce a notion of equivalence for extensions and then
classify extensions ofA byB.

Example.LetA = C andB = C0(0, 1). Then there are four extensions ofA byB;

E1 = C⊕ C0(0, 1)

E2 = C0(0, 1]

E3 = C0[0, 1)

E4 = C(S1)

Definition. Define Busby invariant ...

Definition. DefineExt(A,B) ...

49



Chapter 8

K-Theory

8.1 Introduction

This chapter at best provides a few hints as to the nature of the subject. For treatments of the topics
here, see Refs. [Bro96, Lod92, WO93, Bla86, Cun].

8.2 CommutativeK-Theory

Remark.Recall that a commutative Banach algebra is alwaysC(X) for some compact Hausdorff
spaceX, see theorem 1.8. This result for functions can be fruitfully generalized to include sec-
tions of vector bundles. CommutativeK-theory is also called topologicalK-theory because of this
connection. We will shortly see what topology it describes.

Definition. The Whitney sum of two topological vector bundlesp : E −→ X, q : F −→ X is the
vector bundle

E ⊕ F ∼= {(e, f) ∈ E × F : p(e) = q(f)} .

The set of isomorphism classes of complex vector bundles over a spaceX is a commutative semi-
group with identity, with the operation given by Whitney sum. Denote this semigroup byVC(X).
Similarly defineVR(X).

8.1. Theorem (Swan).LetE be a vector bundle over a compact Hausdorff spaceX. Then there is
a bundleF overX such thatE ⊕ F is trivial.

Proof. See [Hus74].

Definition. A free module of rankn is a module which has a basis, and for which any two such basis
sets have the same cardinality,n. When the module is actually a vector space over a division ring,
the rank is usually called the dimension. See [Hun74].

Definition. A direct summand of a free module is called a projective module. Specifically, the
moduleP is projective if and only if there exists a free moduleF and a moduleK such thatF ∼=
K ⊕ P . See [Hun74].

50
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Remark.Every free module over a ring with identity is projective. See [Hun74].

Example.Z2 andZ3 are both modules overZ6. However, neither of these is free, since neither
posesses a nonempty basis. To see this explicitly, note that the equationr + 1 = 0 can be satisfied
for nonzeror ∈ Z6, so that one cannot find any appropriate linearly independent sets with which to
build a basis. However, bothZ2 andZ3 are projective modules overZ6 becauseZ6 is free as module
over itself and we have the module isomorphismZ2 ⊕ Z3

∼= Z6. From [Hun74].

Remark.Let E be a vector bundle over a compact spaceX. Let Γ (E) be the set of sections ofE.
ThenΓ (E) is a module over the ringC(X). If E is trivial of dimensionn, thenΓ (E) is a free
module of rankn. By Swan’s theoremΓ (E) is projective for anyE. By compactness ofX and
finite-dimensionality of the fibers ofE, Γ (E) is finitely generated.

8.2. Theorem.M is a finitely generated projective module over a commutative Banach algebraA
with unit, if and only ifM = Γ (E) for some vector bundleE on a compact spaceX.

Proof. One direction follows from the above easy remark. For the converse, assumeM is as stated.
SinceM is finitely generated, we know there is a moduleW such thatM⊕W = An, for somen. The
projection ontoM in An is an element of the matrix algebraMn(A) and it is an idempotent. In this
way, each finitely-generated projective module is associated with an idempotent inMn(A), unique
up to similarity. SinceA is a commutative Banach algebra with unit, it isC(X) for some compact
Hausdorff spaceX. We identifyMn(A) with C(X,Mn). Let p be the idempotent associated toM
above, sop ∈ C(X,Mn). DefineE = {(x, ν) ∈ X × Cn : ν ∈ Ran(px)}.
Remark.Roughly speaking we can imagine a big ”infinite-dimensional” bundle overX from which
all other bundles are obtained by cutting out sub-bundles using a continuous projection valued func-
tion onX, which projects onto a finite-dimensional subspace at each fiber. Think of a matrix with a
finite number of non-vanishing entries at each point ofX.

Remark.The above characterization shows thatVC(X) or VR(X) are equivalent to the isomorphis-
m classes of finitely-generated projective modules overCC(X) or CR(X), or equivalently to the
equivalence classes of idempotents inM∞(C(X)). Denote the latter byV (C(X)).

Definition. Let H be an abelian semigroup with identity. Define the Grothendieck group ofH,
Groth(H), to be the quotient ofH ×H by the equivalence relation(x1, y1) ∼ (x2, y2) iff there is a
z with x1 + y2 + z = x2 + y1 + z.

Remark.As the prototype example,Groth(N) = Z.

Definition. LetX be a compact Hausdorff space. DefineK0
C
(X) = Groth(VC(X)) andK0

R
(X) =

Groth(VR(X)). K0
C

andK0
R

are contravariant functors from compact Hausdorff spaces to abelian
groups.

Example.LetX = [0, 1] orX = {∗}. ThenK0
R
(X) ∼= K0

C
(X) ∼= Z.

Example.K0
R
(S1) ∼= Z× Z2.

Example.K0
C
(S1) ∼= Z× Z.

Remark.The definition of theK0 groups for non-compact spaces is more involved. This is because
the definition must behave well for relative spaces, which are required for the development of the
long exact sequence.
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Definition. Let X be a locally compact Hausdorff space. LetY be a closed subspace ofX. Let
E andF be vector bundles overX which are isomorphic when restricted toY , by an isomorphism
α. Identify two such triples(E,F, α) and(E ′, F ′, α′) if E ∼= E ′, F ∼= F ′, by isomorphisms which
intertwineα andα′ when restricted toY . The set of such triples so identifiedforms an abelian
semigroup,V (X, Y ). Define the relativeK groupK0(X, Y ) = Groth(V (X,Y )).

Definition. LetX be a locally compact Hausdorff space. Define theK group

K0(X) ≡ K0(X+,+),

whereX+ is the one-point compactification ofX.

8.3. Theorem. LetX be a locally compact Hausdorff space andY be a closed subspace ofX; let
U = X\Y . Let q : X+ −→ U+ be the identity onU and sendX+\U to the point at infinity. Then
K0(X, Y ) ≡ K0(U), and the sequence

K0(U)→ K0(X)→ K0(Y )

is exact in the middle,Im (q∗) = ker (i∗).

Remark.It is not generically true thatq∗ is injective or thati∗ is surjective.

Definition. K−n(X) ≡ K0(X × Rn) for n > 0.

8.4. Theorem. LetX,Y, U be as above. Then the following long sequence is exact.

· · · → K−n(U)→ K−n(X)→ K−n(Y )→ K−n+1(U)→ · · · → K0(Y ).

Proof.

8.5. Theorem (Chern Character). LetX be a compact Hausdorff space. LetHn (X;Q) be then-th
Alexander or Cech cohomology group ofX. Then

K0
C
⊗Q ∼= ⊕n evenHn (X;Q)

K−1
C
⊗Q ∼= ⊕n oddHn (X;Q)

Proof.

Remark.The above definitions provide contravariant functorsK−n. By reformulating in terms of
modules overC(X), we can obtain covariant functors from commutative Banach algebras to abelian
groups. It is these functors which will be extended to the noncommutative case.

Definition. LetA be a commutative Banach algebra with unit. LetV (A) be the isomorphism classes
of finitely-generated projectiveA modules. DefineK0(A) ≡ Groth(V (A)).

Remark.Note thatK0(C(X)) ∼= K0
C
(X), andK0(CR(X)) ∼= K0

R
(X).

Definition. If A does not have a unit, defineK0(A) ≡ ker (h) ⊂ K0(A+), whereh is the group
homomorphismh : K0(A+) −→ K0(Z) ∼= Z, andA+ isA with unit attached.
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Remark.Attaching a unit is the analog of the one-point compactification process in the previously
described classical theory.

Definition. LetA be a commutative Banach algebra. Define the suspension ofA to be the algebra

SA ≡
{
f : R −→ A : lim

x→∞
‖f(x)‖ = 0

}
.

Note thatSA is also a commutative Banach algebra.

Definition. LetA be a commutative Banach algebra. DefineKn(A) ≡ K0(SnA).

8.3 K0-Theory

Definition. LetA be a Banach algebra. ThenProj(A) is the set of algebraic equivalence classes of
idempotents inA. Algebraic equivalence is defined byp ∼ q⇐⇒∃x, y ∈ A with xy = p, yx = q.

Remark.If A is a C∗ algebra thenProj(A) can be defined as the set of equivalence classes of
projections with equivalence defined by similarity.

Definition. Let V (A) denoteProj(Mat∞ (A)). ThenV (·) is a covariant functor from Banach alge-
bras to commutative semigroups with identity.

Remark.One can equivalently defineV (A) as the set of isomorphism classes of finitely-generated
projectiveA-modules, as in the commutative case.

Example.V (C) ∼= V (Matn (C)) ∼= V (K(H)) ∼= N ∪ {0}.
Example.V (B(H)) ∼= N ∪ {0} ∪ {∞}.
Example.LetM be a typeII1. ThenV (M) ∼= (0,∞].

Example.LetM be a typeII∞. ThenV (M) ∼= [0,∞].

Example.LetX be a compact Hausdorff space. ThenV (C (X)) ∼= VC(X).

Example.LetX be a connected, locally compact, noncompact Hausdorff space. ThenV (C0 (X)) ∼=
{0}.
Example.Fix x, y ∈ C. LetA = {f : [0, 1] −→ Mat2 (C) : f(0) = diag(x, 0), f(1) = diag(y, y)}.
ThenA+ ∼= {f : [0, 1] −→ Mat2 (C) : f(0) = diag(x, z), f(1) = diag(y, y), z ∈ C}. A contains
no nonzero projections, butMat2 (A) contains nontrivial projections. We haveV (A) ∼= N ∪ {0},
andV (A+) ∼= {(m,n) ∈ Z× Z : m,n ≥ 0,m+ neven}. This shows why we must consider the
matrix algebras ofA as well asA itself.

Remark.Note that any of the example semigroups which contains{∞} does not have cancellation.
This can happen generically. Semigroups without cancellation are apparently somewhat difficult to
handle.

Definition. Let π : A+ −→ A+\A be the canonical projection for the unitarization ofA; π is trivial
if A has a unit. We defineK0(A) = ker (π)∗ ⊆ Groth(V (A+)).

Remark.As in the commutative casewe do not defineK0(A) directly as the given Grothendieck
group, but as a subgroup. This is becauseV (A+) is somehow too big; it does not include appropriate
“constraints at infinity”. And equally perplexingly,V (A) is somehow too small.
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Example.C0 (R2) does not have a unit.

• Groth(V (C0 (R2)
+

)) = Z2.

• Groth(V (C0 (R2))) = {0}.

• K0(C0 (R2)) ∼= Z.

Definition. An ordered group is a pair(G,G+) whereG is an Abelian group andG+ is a distin-
guished sub-semigroup containing the identity and having the properties

• G+ + (−G+) = G

• G+ ∩ (−G+) = {0}

G+ is called the positive cone ofG.

Remark.A positove cone as defined above provides a partial order onG by y ≤ x⇐⇒ x−y ∈ G+.

Definition. A scaled ordered group is an ordered group(G,G+) together with a distinguished ele-
mentu ∈ G+ with the property

∀x ∈ G,∃n > 0 with x ≤ nu.

u is called an order unit.

Definition. An ordered gruop(G,G+) is called unperforated ifnx ≥ 0 for somen > 0 implies
x ≥ 0.

Remark.An unperforated ordered group is torsion free.

Definition. A Banach algebraA is called finite if for idempotentsp, q with p ≤ q andp ∼ q, we
havep = q.

Remark.If A has a unit, finiteness as defined above is equivalent to the property that no proper
idempotent hasp ∼ 1.

Remark.A C∗ algebra with unit is finite if and only if every isometry is unitary.

Definition. A Banach algebraA is called stably finite ifMatn (A) is finite for alln.

8.6. Theorem. LetA be a stably finite Banach algebra with unit. ThenK0(A) is an ordered group
with positive coneK0(A)+ = Im (V (A)) ⊂ K0(A).

Proof. See [Bla86].
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8.4 K1-Theory

Definition. Let A be a Banach algebra. LetGL∞(A)0 be the identity component inGL∞(A).
DefineK1(A) ≡ GL∞(A)/GL∞(A)0.

8.7. Lemma. LetA be aC∗ algebra. ThenK1(A) ∼= U∞(A)/U∞(A)0.

Proof. By polar decomposition,Un(A) is a deformation retract ofGL∞(A). SoU∞(A)/U∞(A)0
∼=

GL∞(A)/GL∞(A)0.

Example.K1(C) = {0}.
Example.LetM be a von Neumann algebra. Then by spectral theory,U∞(M) is connected. There-
foreK1(()M) ∼= {0}.
Example.Let A = C(S1). ThenU1(A)/U1(A)0

∼= Z, which is the winding number around the
circle. Furthermore,K1(A) ∼= Z.

Definition. LetA be a Banach algebra. Define the suspension ofA,

SA ≡
{
f : R −→ A : lim

x→∞
‖f(x)‖ = 0

}
.

SA is a Banach algebra with pointwise multiplication and the sup norm.

8.8. Lemma. LetA be aC∗ algebra. ThenSA is aC∗ algebra, andSA ∼= C0(R)⊗A.

Proof. ?

8.9. Theorem. LetA be a Banach algebra. ThenK1(A) ∼= K0(SA).

Proof. This is dificult. See [Bla86, p. 68].

8.10. Theorem.The sequence

K1(J )→ K1(A)→ K1(A/J )→∂ K0(J )→ K0(A)→ K0(A/J )

is exact.

Proof. See [Bla86, p. 70].

Remark.The map∂ is called the index map. It is related to the Fredholm index of unitary elements
of the Calkin algebra. See [Bla86, p. 71].

8.11. Theorem.K1(A) ∼= K1(A+).

Proof. See [Bla86, p. 72].

8.12. Theorem (Bott Periodicity). LetA be a Banach algebra. ThenK1(SA) ∼= K0(A).

Proof. See [Bla86, p. 72].
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8.5 AF Algebras

Definition. LetA be an inductive limit of a sequence of finite-dimensionalC∗ algebras. ThenA is
aC∗ algebra. Any suchC∗ algebra is called an AF algebra. AF stands for approximately finite.

Example.The algebra of compact operators on a Hilbert space is an AF algebra.

Example.The canonical anti-commutation algebra (CAR) is an AF algebra. Recall the discussion
of the fermion algebra, which was a special case of Glimm algebra.

Remark.WhenA is an AF algebra, we know thatK0(A) is some inductive limitlim→ Zrs , although
we do not a-priori know the inclusions, so we do not know which inductive limit it is. Knowledge of
K0(A) is made critical by the following characterization of AF algebras. For AF algebrasA,K0(A)
is called the dimension group.

8.13. Theorem.LetA, B be AF algebras. SupposeK0(A) ∼= K0(B) as an isomorphism of scaled
ordered groups. ThenA ∼= B.

Proof. See [Bla86, p. 55].

Definition. Let G be an ordered group.G is said to have the Riesz interpolation property if given
x1, x2, y1, y2 ∈ G, with x1, x2 ≤ y1, y2 there is az ∈ G with x1, x2 ≤ z ≤ y1, y2.

8.14. Theorem.An ordered group is a dimension group if and only if it is countable, unperforated,
and it has the Riesz interpolation property.

Proof. See [Eff81].

Example.LetG be a countable dense subgroup ofR. ThenG is a dimension group.

Example.The Glimm algebras correspond to the dense subgroups ofQ containingZ. These groups
are classified by generalized integersq = 2m23m35m5 · · · pmii · · ·, which entered the Glimm algebra
construction directly. The subgroups ofQ corresponding to the generalized integerq is the group of
rationals that divideq, denotedZ(q). The groupZ(2∞) corresponds to the CAR algebra.

Example.Let At = C(S1) ×αt Z be the crossed product whereαt is the shift on the circle by
t ∈ (0, 1), and t 6∈ Q. ThenK0(At) ∼= Z × Z, andK1(At) ∼= Z × Z. In fact, we can write
K0(At) ∼= Z + tZ. If u, v are any two unitary elements of aC∗ algebra satisfyinguv = e2πitvu,
thenu, v generate aC∗ algebra isomorphic toAt. At is sometimes called the (one-dimensional)
noncommutative torus. Note that physically this is the algebra of magnetic translation operators for
electrons moving in a constant magnetic field.

8.6 Equivariant K-Theory

Remark.Let (A, G, α) be aC∗ dynamical system. Recall the definition of the crossed product
G×αA. The crossed product provides, roughly speaking, a way to embedA into a largerC∗ algebra
in which the automorphisms ofA become inner.

8.15. Theorem (Connes Thom Isomorphism).Letα : R −→ Aut (A) be a continuous homomor-
phism, withA aC∗ algebra. Then

Ki(A×α R) ∼= K1−i(A), i = 0, 1.
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Remark.This is a generalization of Bott periodicity, which is obtained with the case of the trivial
action. The surprising point is that the result is independent of the action.

Definition. Let (A, G, α) be aC∗ dynamical system withG compact andA unital. Let E be a
finitely-generated projectiveA-module and letλ be a strongly continuous homomorphism fromG
to the invertible elements inB(E) satisfyingλg(ea) = λg(e)αg(a). ThenE , λ is called a finitely-
generated projective(A, G, α)-module.

Definition. Let V G(A) be the set of equivalence classes of finitely-generated projective(A, G, α)-
modules. Note thatV G(A) is a commutative semigroup under Whitney sum.

Definition. Let (A, G, α) be aC∗ dynamical system, withA not necessarily unital. Letπ : A+ −→
C be the canonical projection of the unitization ofA. so we haveπ∗ : Groth(V G(A+)) −→
Groth(V G(C)), where the action ofG onC is trivial. Define the abelian group

KG
0 (A, α) ≡ ker (π∗) ⊆ Groth(V G(A+)).

Remark.If A is unital, then we haveKG
0 (A, α) ∼= Groth(V G(A))

Remark.KG
0 (C) ∼= Rep(G), the representation ring ofG.

8.16. Theorem.Let (A, G, α) be aC∗ dynamical system withG compact. Then

KG
0 (A, α) ∼= K0(A×α G)

Proof. See [Bla86].

Definition. KG
1 (A, α) ≡ KG

0 (SA), where we recall thatSA ∼= C0 (R) ⊗ A, and the action ofG on
C0 (R) is taken to be trivial.

8.17. Theorem (Equivariant Bott Periodicity). Let (A, G, α) be aC∗ dynamical system, withG
compact. Then there exists a naturalRep(G)-module isomorphism

KG
0 (A) ∼= KG

1 (SA).

8.7 Index Theorems

Remark.The Atiyah-Singer index theorem can be formulated in terms ofK-theory as follows. Let
D be an elliptic pseudo-differential operator on a compact manifoldM . The analytic index ofD is
Ind(D) = dim ker (D) - dim coker (D). Recall that the topological index ofD is defined in terms of
the symbolσD as

Indt(D) = 〈τ!(ch(σD)) ∪ Td(T ∗M ⊗R C), [M ]〉,

whereTd(T ∗M ⊗R C) ∈ H∗ (M ;Q) is the Todd class of the complexified cotangent bundleM ,
andτ! : H∗ (T ∗M ;Q) −→ H∗ (T ∗M ;Q) is the inverse of the Thom isomorphism. As a map on
symbols,Indt defines a homomorphism fromK0(T ∗M) to Z, since the symbol defines an element
ofK0(T ∗M). The analytic index, on the other hand, is a composition of the mapsd : K0(T ∗M) −→
K0(M), sending the equivalence class of the symbol to the equivalence class of the operator, and
p∗ : K0(M) −→ Z induced byp : M −→ ∗.
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Remark.Roughly speaking, the family index is the following. Let{Dy : y ∈ Y } be a continuous
family of elliptic pseudo-differential operators on a compact manifold. Assume the{Dy} are invert-
ible except possibly for a compact subset ofY . Now ker (Dy) andcoker (Dy) are vector spaces of
finite-dimension for eachy, and by the appropriate notion of continuity they determine two vector
bundles overY . The analytic index of the family is the difference of the equivalence classes of these
bundles inK0(Y ).



Chapter 9

NuclearC∗ Algebras

Definition. A C∗ algebraA is called nuclear ifπ(A)cc is hyperfinite for any representationπ of A.

9.1. Theorem. T.F.A.E.

1. A is a nuclearC∗ algebra.

2. id : A −→ A can be approximated pointwise in norm by completely positive finite-rank
contractions.

3. Acc is hyperfinite.

Proof.

9.2. Theorem. If A is a typeI C∗ algebra, thenA is nuclear.

9.3. Theorem. Inductive limits of typeI C∗ algebras are nuclear. In particular, AF algebras are
nuclear.

9.4. Theorem. LetA be a separable nuclearC∗ algebra andB be anyC∗ algebra. ThenExt(A,B)
is a group.
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